常用算法(后面有inplace版本):

 package ArrayMergeSort;

 import java.util.Arrays;

 public class Solution {
public int[] mergeSort(int[] arr) {
if (arr.length == 1) return arr;
else {
int[] arr1 = Arrays.copyOfRange(arr, 0, arr.length/2);
int[] arr2 = Arrays.copyOfRange(arr, arr.length/2, arr.length);
return merge(mergeSort(arr1), mergeSort(arr2));
}
} public int[] merge(int[] arr1, int[] arr2) {
int len1 = arr1.length;
int len2 = arr2.length;
int[] res = new int[len1+len2];
int i = 0, j=0, cur=0;
while (i<len1 && j<len2) {
if (arr1[i] <= arr2[j]) {
res[cur++] = arr1[i++];
}
else {
res[cur++] = arr2[j++];
}
}
while (i<len1) {
res[cur++] = arr1[i++];
}
while (j<len2) {
res[cur++] = arr2[j++];
}
return res;
} /**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Solution sol = new Solution();
int[] arr = sol.mergeSort(new int[]{6,5,4,8,2,1});
System.out.println(Arrays.toString(arr));
} }

在如上算法中只需稍作修改,加上一行代码,就可以求数组的逆序对

如数组 <2,3,8,6,1> 的逆序对为:<2,1> <3,1> <8,6> <8,1> <6,1> 共5个逆序对。

暴力法是O(N^2)

mergeSort可以O(NlogN)

定义一个static variable count, 然后在12行加入

 public int[] merge(int[] arr1, int[] arr2) {
int len1 = arr1.length;
int len2 = arr2.length;
int[] res = new int[len1+len2];
int i = 0, j=0, cur=0;
while (i<len1 && j<len2) {
if (arr1[i] <= arr2[j]) {
res[cur++] = arr1[i++];
}
else { // arr1[i] > arr2[j];
res[cur++] = arr2[j++];
count += arr1.length - i;
}
}
while (i<len1) {
res[cur++] = arr1[i++];
}
while (j<len2) {
res[cur++] = arr2[j++];
}
return res;
}

Inplace的mergeSort不是那么好写,我还是在merge的时候用了额外空间

 package ArrayMergeSort;

 import java.util.Arrays;

 public class Solution2 {

     public int[] mergeSort(int[] arr) {
if (arr==null || arr.length==0) return arr;
mergeSort(arr, 0, arr.length-1);
return arr;
} public void mergeSort(int[] arr, int l, int r) {
if (r-l == 0) return;
int m = (l+r)/2;
mergeSort(arr, l, m);
mergeSort(arr, m+1, r);
merge(arr, l, m, m+1, r);
} public void merge(int[] arr, int l1, int r1, int l2, int r2) {
int[] temp = new int[r2-l1+1];
int i1=l1, i2=l2, cur=0;
while (i1<=r1 && i2<=r2) {
if (arr[i1] <= arr[i2]) temp[cur]=arr[i1++];
else temp[cur] = arr[i2++];
cur++;
}
while(i1<=r1) temp[cur++]=arr[i1++];
while(i2<=r2) temp[cur++]=arr[i2++];
cur = 0;
for (int i=l1; i<=r2; i++) arr[i]=temp[cur++];
} /**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Solution2 sol = new Solution2();
int[] arr = sol.mergeSort(new int[]{6,5,4,2,1});
System.out.println(Arrays.toString(arr));
} }

Iterative Merge Sort大致的算法是,假设每一层需要merge许多数组 A和B数组是其中两个,i 可以理解为A或B的size,从1一直到array.length/2. j 可以理解为一组A和B之中B的结束位置。 Merge函数跟上面一样

 Iterative Merge Sort
public static T[] Iterative(T[] array, IComparer<T> comparer)
{
for (int i = 1; i <= array.Length / 2 + 1; i *= 2)
{
for (int j = i; j < array.Length; j += 2 * i)
{
Merge(array, j - i, j, Math.Min(j + i, array.Length), comparer);
}
} return array;
}

Summary: Merge Sort of Array && 求逆序对的更多相关文章

  1. 【剑指offer】求逆序对的个数

    2013-09-07 10:50:31 面试题36:在数组中的两个数字如果前面一个数字大于后面的数字,则这两个数字构成一个逆序对.输入一个数组,求出这个数组中逆序对的总数. 小结: 最直观的的方法是: ...

  2. POJ 3067 - Japan - [归并排序/树状数组(BIT)求逆序对]

    Time Limit: 1000MS Memory Limit: 65536K Description Japan plans to welcome the ACM ICPC World Finals ...

  3. POJ 4020 NEERC John's inversion 贪心+归并求逆序对

    题意:给你n张卡,每张卡上有蓝色和红色的两种数字,求一种排列使得对应颜色数字之间形成的逆序对总数最小 题解:贪心,先按蓝色排序,数字相同再按红色排,那么蓝色数字的逆序总数为0,考虑交换红色的数字消除逆 ...

  4. 归并排序+归并排序求逆序对(例题P1908)

    归并排序(merge sort) 顾名思义,这是一种排序算法,时间复杂度为O(nlogn),时间复杂度上和快排一样 归并排序是分治思想的应用,我们先将n个数不断地二分,最后得到n个长度为1的区间,显然 ...

  5. POJ2299Ultra-QuickSort(归并排序 + 树状数组求逆序对)

    树状数组求逆序对   转载http://www.cnblogs.com/shenshuyang/archive/2012/07/14/2591859.html 转载: 树状数组,具体的说是 离散化+树 ...

  6. HDU 4911 http://acm.hdu.edu.cn/showproblem.php?pid=4911(线段树求逆序对)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4911 解题报告: 给出一个长度为n的序列,然后给出一个k,要你求最多做k次相邻的数字交换后,逆序数最少 ...

  7. SGU 180 Inversions(离散化 + 线段树求逆序对)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=180 解题报告:一个裸的求逆序对的题,离散化+线段树,也可以用离散化+树状数组.因为 ...

  8. 树状数组求逆序对:POJ 2299、3067

    前几天开始看树状数组了,然后开始找题来刷. 首先是 POJ 2299 Ultra-QuickSort: http://poj.org/problem?id=2299 这题是指给你一个无序序列,只能交换 ...

  9. 浙江工商大学15年校赛I题 Inversion 【归并排序求逆序对】

    Inversion Time Limit 1s Memory Limit 131072KB Judge Program Standard Ratio(Solve/Submit) 15.00%(3/20 ...

随机推荐

  1. the OS maintains a number of queues

    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION To do its job, the OS ...

  2. heapsort

    Introduction to Algorithms Third Edition The (binary) heap data structure is an array object that we ...

  3. Spring配置文件的读取

    1.配置文件的命名 Spring框架中的默认配置文件,建议命名为applicationContext.xml * 编写配置文件,默认位置有两个 ①src目录.②WEB-INF目录 2.Spring 配 ...

  4. 通过runtime替换系统类实现的代码(从github开源库fdstackview中摘录)

    其中部分代码为汇编:由此可见oc的runtime的灵活性和能力.此代码仅供参考 // ---------------------------------------------------- // R ...

  5. Java高级之内存模型分析

    博客出自:http://blog.csdn.net/liuxian13183,转载注明出处! All Rights Reserved ! 下文是博主感悟,请带着怀疑性的态度阅读! 需要了解基本变量所占 ...

  6. SQL 编辑

    局部变量: DECLARE @variable_name Datatype Variable_naem为局部变量的名称,Datatype为数据名称. 例如: DECLARE @name varchar ...

  7. python 十进制 十六进制

    把十六进制的字串转为十进制数字:>>> print int('ff', 16)   255 把十进制数字转换为以十六进制表示之字串,可调用内置的hex()函数:>>> ...

  8. yii2 实现多表联查

  9. [LeetCode] Regular Expression Matching(递归)

    Implement regular expression matching with support for '.' and '*'. '.' Matches any single character ...

  10. Android开发笔记-加载xml资源

    1.Activity获取strings.xml中键的值 需要通过 getResources().getString(R.string.*)方法获得 以“state”为例 String value= g ...