题目求小于n不与n互质的正整数的和。

一个结论是小于n与n互质的正整数和=φ(n)*n/2。

  • 因为如果a与n互质,那么n-a也与n互质,即若gcd(a,n)=1则gcd(n-a,n)=1,反证法即可证明。
  • 也就是说小于n与n互质的数是成对的,且它们的和是n,共有φ(n)/2对。
  • 所以小于n与n互质的正整数和=φ(n)*n/2。
 #include<cstdio>
#include<cstring>
using namespace std;
int phi(int n){
int res=n;
for(int i=; i*i<=n; ++i){
if(n%i) continue;
while(n%i==) n/=i;
res-=res/i;
}
if(n!=) res-=res/n;
return res;
}
int main(){
int n;
while(~scanf("%d",&n) && n){
printf("%lld\n",((long long)n*(n-)/-(long long)n*phi(n)/)%);
}
return ;
}

HDU3501 Calculation 2(欧拉函数)的更多相关文章

  1. HDU3501 Calculation 2 [欧拉函数]

    题目传送门 Calculation 2 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  2. hdu 3501 Calculation 2 (欧拉函数)

    题目 题意:求小于n并且 和n不互质的数的总和. 思路:求小于n并且与n互质的数的和为:n*phi[n]/2 . 若a和n互质,n-a必定也和n互质(a<n).也就是说num必定为偶数.其中互质 ...

  3. HDU 3501 Calculation 2(欧拉函数)

    Calculation 2 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submi ...

  4. HDU 3501 Calculation 2 (欧拉函数)

    题目链接 题意 : 求小于n的数中与n不互质的所有数字之和. 思路 : 欧拉函数求的是小于等于n的数中与n互质的数个数,这个题的话,先把所有的数字之和求出来,再减掉欧拉函数中所有质数之和(即为eula ...

  5. HDU3501——欧拉函数裸题

    给整数N(1 ≤ N ≤ 1000000000),求小于N的与N不互素的所有正整数的和. 思路:1.用欧拉函数求出小于N的与N互素的正整数的个数: 2.若 p 与 N 互素,则 N-p 必与 N 互素 ...

  6. 欧拉函数 || Calculation 2 || HDU 3501

    题面: 题解:欧拉函数的基础应用,再套个很 easy 的等差数列前 n 项和就成了. 啊,最近在补作业+准备月考+学数论,题就没怎么写,感觉菜得一匹>_< CSL加油加油~! 代码: #i ...

  7. 欧拉函数:HDU3501-Calculation 2

    Calculation 2 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Probl ...

  8. hdu 3501 容斥原理或欧拉函数

    Calculation 2 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  9. 杭电3501Calculation 2 欧拉函数

    Calculation 2 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  10. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

随机推荐

  1. 诠释Linux中『一切都是文件』概念和相应的文件类型

    导读 在 Unix 和它衍生的比如 Linux 系统中,一切都可以看做文件.虽然它仅仅只是一个泛泛的概念,但这是事实.如果有不是文件的,那它一定是正运行的进程. 要理解这点,可以举个例子,您的根目录( ...

  2. Coursera台大机器学习课程笔记9 -- Logistic Regression

    如果只想得到某种概率,而不是简单的分类,那么该如何做呢?在误差衡量问题上,如何选取误差函数这段很有意思. 接下来是如何最小化Ein,由于Ein是可凸优化的,所以采用的是梯度下降法:只要达到谷底,就找到 ...

  3. BZOJ 1452 [JSOI2009] Count

    这道题好像有点简单的样子... absi找题目好厉害啊...确实是一道比较裸的2dBIT啊. 水掉吧. 附:2dBIT怎么做: 2dBIT就是BIT套BIT啦. 所以修改loop(x+=lowbit( ...

  4. 【Python】Django支持事务方式

    代码: with transaction.atomic(): for i in xrange(int(svc_instance_num)): tmp_fileprotect_svc_instance ...

  5. iOS __block类型变量作用域

    看下图 在c语言中,2个独立的函数是不可能互相访问局部变量的,但是__block提供了这个功能,它不单单能读变量,还可以对变量进行写!上图说明,block获得了i最后的真实值5,没有只取得0,这都是& ...

  6. 对Java中字符串的进一步理解

    字符串在程序开发中无处不在,也是用户交互所涉及到最频繁的数据类型,那么字符串不仅仅就是我们简单的理解的String str = "abc";一起来更加深入的看一下 在Java中,字 ...

  7. Java for LeetCode 034 Search for a Range

    Given a sorted array of integers, find the starting and ending position of a given target value. You ...

  8. 越狱后天气闪退 iPhone5天气闪退解决方法

    iPhone5天气闪退解决方法: 第一步:前往Cydia卸载AppSync; 第二步:通过iTools删除/var/mobile/Library/Caches/com.apple.mobile.ins ...

  9. Popular Cows(codevs 2186)

    题意: 有N(N<=10000)头牛,每头牛都想成为most poluler的牛,给出M(M<=50000)个关系,如(1,2)代表1欢迎2,关系可以传递,但是不可以相互,即1欢迎2不代表 ...

  10. Windows中检测当前是否有窗口全屏

    不时看到有人问起如何判断当前是否有窗口正处于全屏状态? 不过, 在解决这个问题之前先来解决一个简单的问题?         什么是全屏?     相当一部分人认为: 窗口如果是最大化的, 那么它就是最 ...