POJ 2486 Apple Tree(树形DP)
树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了...
看看了题解http://www.cnblogs.com/wuyiqi/archive/2012/01/09/2316758.html画画题解中的三种情况,还是可以理解的。
设dp[0][s][j]表示从s(当前根节点)出发,走 j 步,回到s所能获得的最大权值
dp[1][s][j]表示从s(当前根节点)出发,走j步,不回到s所能获得的最大权值
现在我们就可以分配背包容量了:父节点与子节点分配背包容量,从而设计出状态转移方程
主要思想:
s返回,t返回
s不返回,t返回(走向t子树,t子树返回之后走向s的其他子树,然后不回到s)
s返回,t不返回(遍历s的其他子树后返回s,返回之后走向t子树,然后不回到t)
没有都不返回,肯定有一方有一个返回的过程,再去另一边的子树的
总结起来一句话,要么去s的其他子树呆着,要么去t子树呆着,要么回到s点
1、在t子树返回,其他子树也返回,即回到当前根节点s
2,、不返回根节点,但在t子树返回,即相当于从t出发走k步返回t的最优值 加上 从s出发走j-k步到其他子树不返回的最优值,中间有s与t连接起来,其实就等于从s出发遍历t子树后(dp[0][t][k])又回到s(这一步多了中间的来回两步),再走出去(其他子树)【dp[1][s][j-k]】,不回来
3、不返回根节点,在t子树也不返回,等价于从s出发遍历其他子树,回到s(dp[0][s][j-k]),再走向t子树,不回到t(dp[1][t][k]),这个过程s-t只走了一步
dp[0][s][j+2]=Max(dp[0][s][j+2],dp[0][t][k]+dp[0][s][j-k]);//从s出发,要回到s,需要多走两步s-t,t-s,分配给t子树k步,其他子树j-k步,都返回
dp[1][s][j+2]=Max(dp[1][s][j+2],dp[0][t][k]+dp[1][s][j-k]);//不回到s(去s的其他子树),在t子树返回,同样有多出两步
dp[1][s][j+1]=Max(dp[1][s][j+1],dp[1][t][k]+dp[0][s][j-k]);//先遍历s的其他子树,回到s,遍历t子树,在当前子树t不返回,多走一步
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
#define N 200100
#define LL __int64
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
struct node
{
int u,v,next;
}edge[];
int dp[][][];
int first[];
int p[];
int t,n,k;
void CL()
{
t = ;
memset(first,-,sizeof(first));
memset(dp,,sizeof(dp));
}
void add(int u,int v)
{
edge[t].u = u;
edge[t].v = v;
edge[t].next = first[u];
first[u] = t ++;
}
void dfs(int rt)
{
int i,j,son,v;
for(i = ;i <= k;i ++)
dp[rt][i][] = dp[rt][i][] = p[rt];
for(i = first[rt];i != -;i = edge[i].next)
{
son = edge[i].v;
dfs(son);
for(j = k;j >= ;j --)
{
for(v = ;v <= j;v ++)
{
dp[rt][j+][] = max(dp[rt][j+][],dp[rt][v][]+dp[son][j-v][]);
dp[rt][j+][] = max(dp[rt][j+][],dp[rt][v][]+dp[son][j-v][]);
dp[rt][j+][] = max(dp[rt][j+][],dp[rt][v][]+dp[son][j-v][]);
}
}
}
}
int main()
{
int i,u,v;
while(scanf("%d%d",&n,&k)!=EOF)
{
CL();
for(i = ;i <= n;i ++)
scanf("%d",&p[i]);
for(i = ;i < n;i ++)
{
scanf("%d%d",&u,&v);
add(u,v);
}
dfs();
printf("%d\n",dp[][k][]);
}
return ;
}
POJ 2486 Apple Tree(树形DP)的更多相关文章
- poj 2486 Apple Tree(树形DP 状态方程有点难想)
Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9808 Accepted: 3260 Descri ...
- POJ 2486 Apple Tree (树形dp 经典题)
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const ...
- 【POJ 2486】 Apple Tree (树形DP)
Apple Tree Description Wshxzt is a lovely girl. She likes apple very much. One day HX takes her to a ...
- POJ 2486 Apple Tree (树形DP,树形背包)
题意:给定一棵树图,一个人从点s出发,只能走K步,每个点都有一定数量的苹果,要求收集尽量多的苹果,输出最多苹果数. 思路: 既然是树,而且有限制k步,那么树形DP正好. 考虑1个点的情况:(1)可能在 ...
- POJ 2486 Apple Tree
好抽象的树形DP......... Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6411 Accepte ...
- URAL_1018 Binary Apple Tree 树形DP+背包
这个题目给定一棵树,以及树的每个树枝的苹果数量,要求在保留K个树枝的情况下最多能保留多少个苹果 一看就觉得是个树形DP,然后想出 dp[i][j]来表示第i个节点保留j个树枝的最大苹果数,但是在树形过 ...
- POJ 2486 Apple Tree(树形dp)
http://poj.org/problem?id=2486 题意: 有n个点,每个点有一个权值,从1出发,走k步,最多能获得多少权值.(每个点只能获得一次) 思路: 从1点开始,往下dfs,对于每个 ...
- poj 2486 Apple Tree (树形背包dp)
本文出自 http://blog.csdn.net/shuangde800 题目链接: poj-2486 题意 给一个n个节点的树,节点编号为1~n, 根节点为1, 每个节点有一个权值. 从 ...
- POJ 2486 Apple Tree ( 树型DP )
#include <iostream> #include <cstring> #include <deque> using namespace std; #defi ...
随机推荐
- php中global与$GLOBALS的用法及区别-转载
php中global 与 $GLOBALS[""] 差别 原本觉得global和$GLOBALS除了写法不一样觉得,其他都一样,可是在实际利用中发现2者的差别还是很大的! 先看下面 ...
- 【云计算】开源装机自动化系统 CloudBoot OSInstall 介绍
"CloudBoot"(OSinstall) 发布了. 产品更新及特点如下: 新增虚拟化操作系统适配:支持主流操作系统:RedHat.CentOS.SUSE.Ubuntu.Wind ...
- C#中Const和Readonly的区别
const 的概念就是一个包含不能修改的值的变量.常数表达式是在编译时可被完全计算的表达式.因此不能从一个变量中提取的值来初始化常量.如果 const int a = b+1;b是一个变量,显然不能再 ...
- encode和decode
Python字符串的encode与decode研究心得乱码问题解决方法 为什么会报错“UnicodeEncodeError: 'ascii' codec can't encode characters ...
- android 中如何分析内存泄漏
转载:http://blog.csdn.net/fulinwsuafcie/article/details/8363218 前提条件: 1,电脑安装了java 运行环境 2,手机端开启了 USB 调试 ...
- July 17th, Week 30th Sunday, 2016
You are beautiful, but that is not why I love you. 你如此美丽,但我并非因此而爱你. Although we have always been tol ...
- 8.桥接模式(Bridge Pattern)
using System; namespace ConsoleApplication6 { class Program { static void Main(string[] args) { // 创 ...
- 使用HttpClient操作ASP.NET Web API 2.1增删改查
使用NuGet包安装Microsoft ASP.NET Web API 2.1 Client Libraries, 调用方式代码如下: HttpClient client = new HttpClie ...
- svn服务端hooks钩子可用于多项目自动同步
废话不多说,直接上post-commit脚本了: 日志会全部记录下来包括同步的文件 vim post-commit #!/bin/sh REPOS="$1" # 仓库的路径 REV ...
- 在.NET下使用C# 控制Windows系统音量
C#开发Windows应用程序中经常需要去控制系统的音量,分两种方式: 1.使用Win Api控制 2.使用C++ dll控制 Win Api控制: 使用user32.dll和winmm.dll都可以 ...