7、RNAseq Downstream Analysis
Created by Dennis C Wylie, last modified on Jun 29, 2015
Machine learning methods (including clustering, dimensionality reduction, classification and regression modeling, resampling techniques, etc.), ANOVA modeling, and empirical Bayes analysis.
Unsupervised Analysis
Unsupervised methods provide exploratory data analysis useful for getting a big picture view: can provide valuable QC information and can help to both assess expected trends and identify unexpected patterns in your data.
- Deliverables:
- Plots in png and pdf format
- Results from any additional algorithms applied may be provided in tab-delimited or excel formatted tables as appropriate
- Tools Used:
- Hierarchical Clustering: both of genes and and samples.
- Principal Components Analysis: PCA biplot of data after centering both on the gene and sample axes (and optionally scaling of gene axis if desired).
- Other methods: (e.g., k-means clustering, self-organized maps, multidimensional scaling, etc.) available if desired
Empirical Bayes Differential Expression Analysis
RNAseq experiments yield simultaneous measurements of many intrinsically similar variables (gene expression levels) but with often limited sample sizes. Empirical Bayes methods provide a statistical approach designed just for such situations which "borrow strength" across genes to increase statistical power and decrease false discovery.
Deliverables:
Tables of model parameters, p-values, and FDR q-values (in tab-delimited and excel format)
Boxplots (stratified by sample group) and pairs plots of top genes provided in png and pdf format
- Tools Used:
- Limma: applies empirical Bayes methods in the construction of linear models (e.g, t-tests, ANOVA) for a large variety of experimental designs. Originally designed for microarray data analysis, Limma's developers have substantially extended its functionality into the realm of RNAseq as well.
Supervised Analysis
Many methods available for classification and regression as appropriate to your analysis. Model performance may be assessed using standard metrics evaluated under cross-validation or using independent test sets if available. Analysis will be conducted using R and/or Python scripts.
- Deliverables:
- Tables of results (in tab-delimited and excel formats)
- plots in png and pdf format
- R and/or Python source files
- binary, JSON, or XML representations of R or Python objects can be made available if desired
- further reports in the form of slides or text documents may be provided in standard formats (pdf, doc, ppt) if desired
- Methods Available:
- Diagonal linear discriminant analysis (DLDA, a form of linear naive Bayes classification)
- Linear and quadratic discriminant analysis
- Logistic regression including L1/lasso and/or L2/ridge regularization if desired
- Partial least squares (PLS) discriminant analysis and regression
- k-nearest neighbors (KNN)
- Support vector machines (SVM)
- Decision tree ensembles (Random Forests or AdaBoost).
- Other methods are available on request.
7、RNAseq Downstream Analysis的更多相关文章
- 6、RNA-Seq Analysis Pipeline
Created by Dhivya Arasappan, last modified by Dennis C Wylie on Nov 08, 2015 This pipeline uses an a ...
- 转录组分析综述A survey of best practices for RNA-seq data analysis
转录组分析综述 转录组 文献解读 Trinity cufflinks 转录组研究综述文章解读 今天介绍下小编最近阅读的关于RNA-seq分析的文章,文章发在Genome Biology 上的A sur ...
- A survey of best practices for RNA-seq data analysis RNA-seq数据分析指南
A survey of best practices for RNA-seq data analysis RNA-seq数据分析指南 内容 前言 各位同学/老师,大家好,现在由我给大家讲讲我的文献阅读 ...
- Power BI 与 Azure Analysis Services 的数据关联:1、建立 Azure Analysis Services服务
Power BI 与 Azure Analysis Services 的数据关联:1.建立 Azure Analysis Services服务
- 10、RNA-seq for DE analysis training(Mapping to assign reads to genes)
1.Goal of mapping 1)We want to assign reads to genes they were derived from 2)The result of the mapp ...
- single-cell RNA-seq 工具大全
[怪毛匠子-整理] awesome-single-cell List of software packages (and the people developing these methods) fo ...
- 7、sraToolkit安装使用
参考:http://blog.csdn.net/Cs_mary/article/details/78378552 ###prefetch 参数解释 https://www.ncbi.nl ...
- 玩转大数据:深入浅出大数据挖掘技术(Apriori算法、Tanagra工具、决策树)
一.本课程是怎么样的一门课程(全面介绍) 1.1.课程的背景 “大数据”作为时下最火热的IT行业的词汇,随之而来的数据仓库.数据分析.数据挖掘等等围绕大数据的商业价值的利用逐渐成为 ...
- loadrunner入门篇-Analysis 分析器
analysis简介 分析器就是对测试结果数据进行分析的组件,它是LR三大组件之一,保存着大量用来分析性能测试结果的数据图,但并不一定要对每个视图进行分析,可以根据实际情况选择相关的数据视图进行分析, ...
随机推荐
- 【Flask】模板继承
# 模版继承笔记: ### 为什么需要模版继承:模版继承可以把一些公用的代码单独抽取出来放到一个父模板中.以后子模板直接继承就可以使用了.这样可以重复性的代码,并且以后修改起来也比较方便. ### 模 ...
- 20145229吴姗珊 《Java程序设计》第7周学习总结
20145229吴姗珊 <Java程序设计>第7周学习总结 教材学习内容总结 第13章时间与日期 即使标注为GMT(格林威治时间),实际上谈到的的是UTC(Unix时间)时间. 秒的单位定 ...
- vim 的复制粘贴命令,以及使用寄存器来存放要复制的内容;
一,y(yanks)复制,p(paste)粘贴: yy 复制当前行,2yy,复制2行: Y 复制整行:Y=yy; p 粘贴到光标后: P 粘贴到光标前: 注意vim会知道你复制内容的是整行还是一个矩 ...
- poj 3264 Balanced Lineup【RMQ-ST查询区间最大最小值之差 +模板应用】
题目地址:http://poj.org/problem?id=3264 Sample Input 6 3 1 7 3 4 2 5 1 5 4 6 2 2 Sample Output 6 3 0分析:标 ...
- EntityFramework 学习 一 三种开发模式
Entity Framework支持3种不同的开发方法 1.Code First 2.Model First 3.Database First Code First 使用Code First开发模式, ...
- Codeforces Round #260 (Div. 2) A , B , C 标记,找规律 , dp
A. Laptops time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- Python的进度条的制作
import sys,time #导入模块 for i in range(50): #进度条的长度 sys.stdout.write("#") #进度条的内容,这里要注意了,pyc ...
- 【原创】cocos2d-x3.9蓝牙开发之蓝牙开启
本人第一次搞android开发,很多东西都是只知道一点点,然而都没怎么实践过,所以这次就边学边做自己想要的功能,可能会花较长时间,不过肯定是值得的,有用词或哪里说得不对的请指正. 我自己有androi ...
- ibatis的resultClass与resultMap 的区别
ibatis的resultClass与resultMap还是有很大的区别.以下是我碰到的一个问题. 配置文件写法如下: 1 sqlMap2 typeAlias alias="notice&q ...
- 代码题(1)—lower_bound和upper_bound算法
1.lower_bound:查找序列中的第一个出现的值大于等于val的位置 这个序列中可能会有很多重复的元素,也可能所有的元素都相同,为了充分考虑这种边界条件,STL中的lower_bound算法总体 ...