7、RNAseq Downstream Analysis
Created by Dennis C Wylie, last modified on Jun 29, 2015
Machine learning methods (including clustering, dimensionality reduction, classification and regression modeling, resampling techniques, etc.), ANOVA modeling, and empirical Bayes analysis.
Unsupervised Analysis
Unsupervised methods provide exploratory data analysis useful for getting a big picture view: can provide valuable QC information and can help to both assess expected trends and identify unexpected patterns in your data.
- Deliverables:
- Plots in png and pdf format
- Results from any additional algorithms applied may be provided in tab-delimited or excel formatted tables as appropriate
- Tools Used:
- Hierarchical Clustering: both of genes and and samples.
- Principal Components Analysis: PCA biplot of data after centering both on the gene and sample axes (and optionally scaling of gene axis if desired).
- Other methods: (e.g., k-means clustering, self-organized maps, multidimensional scaling, etc.) available if desired
Empirical Bayes Differential Expression Analysis
RNAseq experiments yield simultaneous measurements of many intrinsically similar variables (gene expression levels) but with often limited sample sizes. Empirical Bayes methods provide a statistical approach designed just for such situations which "borrow strength" across genes to increase statistical power and decrease false discovery.
Deliverables:
Tables of model parameters, p-values, and FDR q-values (in tab-delimited and excel format)
Boxplots (stratified by sample group) and pairs plots of top genes provided in png and pdf format
- Tools Used:
- Limma: applies empirical Bayes methods in the construction of linear models (e.g, t-tests, ANOVA) for a large variety of experimental designs. Originally designed for microarray data analysis, Limma's developers have substantially extended its functionality into the realm of RNAseq as well.
Supervised Analysis
Many methods available for classification and regression as appropriate to your analysis. Model performance may be assessed using standard metrics evaluated under cross-validation or using independent test sets if available. Analysis will be conducted using R and/or Python scripts.
- Deliverables:
- Tables of results (in tab-delimited and excel formats)
- plots in png and pdf format
- R and/or Python source files
- binary, JSON, or XML representations of R or Python objects can be made available if desired
- further reports in the form of slides or text documents may be provided in standard formats (pdf, doc, ppt) if desired
- Methods Available:
- Diagonal linear discriminant analysis (DLDA, a form of linear naive Bayes classification)
- Linear and quadratic discriminant analysis
- Logistic regression including L1/lasso and/or L2/ridge regularization if desired
- Partial least squares (PLS) discriminant analysis and regression
- k-nearest neighbors (KNN)
- Support vector machines (SVM)
- Decision tree ensembles (Random Forests or AdaBoost).
- Other methods are available on request.
7、RNAseq Downstream Analysis的更多相关文章
- 6、RNA-Seq Analysis Pipeline
Created by Dhivya Arasappan, last modified by Dennis C Wylie on Nov 08, 2015 This pipeline uses an a ...
- 转录组分析综述A survey of best practices for RNA-seq data analysis
转录组分析综述 转录组 文献解读 Trinity cufflinks 转录组研究综述文章解读 今天介绍下小编最近阅读的关于RNA-seq分析的文章,文章发在Genome Biology 上的A sur ...
- A survey of best practices for RNA-seq data analysis RNA-seq数据分析指南
A survey of best practices for RNA-seq data analysis RNA-seq数据分析指南 内容 前言 各位同学/老师,大家好,现在由我给大家讲讲我的文献阅读 ...
- Power BI 与 Azure Analysis Services 的数据关联:1、建立 Azure Analysis Services服务
Power BI 与 Azure Analysis Services 的数据关联:1.建立 Azure Analysis Services服务
- 10、RNA-seq for DE analysis training(Mapping to assign reads to genes)
1.Goal of mapping 1)We want to assign reads to genes they were derived from 2)The result of the mapp ...
- single-cell RNA-seq 工具大全
[怪毛匠子-整理] awesome-single-cell List of software packages (and the people developing these methods) fo ...
- 7、sraToolkit安装使用
参考:http://blog.csdn.net/Cs_mary/article/details/78378552 ###prefetch 参数解释 https://www.ncbi.nl ...
- 玩转大数据:深入浅出大数据挖掘技术(Apriori算法、Tanagra工具、决策树)
一.本课程是怎么样的一门课程(全面介绍) 1.1.课程的背景 “大数据”作为时下最火热的IT行业的词汇,随之而来的数据仓库.数据分析.数据挖掘等等围绕大数据的商业价值的利用逐渐成为 ...
- loadrunner入门篇-Analysis 分析器
analysis简介 分析器就是对测试结果数据进行分析的组件,它是LR三大组件之一,保存着大量用来分析性能测试结果的数据图,但并不一定要对每个视图进行分析,可以根据实际情况选择相关的数据视图进行分析, ...
随机推荐
- 《DevExpress》记录之TreeList
如这两幅图所示:如果要显示左边的竖线,需要设置 感谢 DoomGuards本节Dome下载地址:http://pan.baidu.com/s/1wBOJk 密码:vz4d
- [原创]java WEB学习笔记14:JSP的9 个隐含对象 及 JSP 的基本语法
本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...
- 【leetnode刷题笔记】Maximum Depth of binary tree
Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...
- 算法(Algorithms)第4版 练习 1.5.9
不可能.如果是weighted quick-union的话,6的父节点应该是5,而不是5的父节点是6.
- 大话设计模式--组合模式 Composite -- C++实现实例
1. 组合模式: 将对象组合成树形结构以表示"部分--整体"的层次结构,组合模式使用户对单个对象和组合对象的使用具有一致性. 需求中是体现部分与整体层次的结构时,希望用户可以忽略组 ...
- Android_微信_设置
减少 内存的使用 (http://news.ifeng.com/a/20170716/51440541_0.shtml) 1.关闭“附近的人” 打开微信,依次点击[我]—[设置]—[通用]—[功能], ...
- Function Pointers in C
来源:https://cs.nyu.edu/courses/spring12/CSCI-GA.3033-014/Assignment1/function_pointers.html Function ...
- Linux课程---4、Linux目录结构及常用命令(目录结构)
Linux课程---4.Linux目录结构及常用命令(目录结构) 一.总结 一句话总结: 家目录:./root:root用户的家目录 能执行的程序:./bin:所有用户都能执行的程序:./sbin:只 ...
- MessFormat的简单使用
MessageFormat用法java.text.MessageFormat 作用:MessageFormat 获取一组对象,格式化这些对象,然后将格式化后的字符串插入到模式中的适当位置. Messa ...
- python-编译安装Python2.7
yum中最新的也是Python 2.6.6,只能下载Python 2.7.5的源代码自己编译安装. 操作步骤如下: 1)下载并解压Python 2.7.9的源代码 cd /opt wget --no- ...