什么是负载均衡

负载均衡,英文名称为Load Balance,指由多台服务器以对称的方式组成一个服务器集合,每台服务器都具有等价的地位,都可以单独对外提供服务而无须其他服务器的辅助。通过某种负载分担技术,将外部发送来的请求均匀分配到对称结构中的某一台服务器上,而接收到请求的服务器独立地回应客户的请求。负载均衡能够平均分配客户请求到服务器阵列,借此提供快速获取重要数据,解决大量并发访问服务问题,这种集群技术可以用最少的投资获得接近于大型主机的性能。

负载均衡分为软件负载均衡和硬件负载均衡,前者的代表是阿里章文嵩博士研发的LVS,后者则是均衡服务器比如F5,当然这只是提一下,不是重点。

本文讲述的是"将外部发送来的请求均匀分配到对称结构中的某一台服务器上"的各种算法,并以Java代码演示每种算法的具体实现,OK,下面进入正题,在进入正题前,先写一个类来模拟Ip列表:

 public class IpMap
{
// 待路由的Ip列表,Key代表Ip,Value代表该Ip的权重
public static HashMap<String, Integer> serverWeightMap =
new HashMap<String, Integer>(); static
{
serverWeightMap.put("192.168.1.100", 1);
serverWeightMap.put("192.168.1.101", 1);
// 权重为4
serverWeightMap.put("192.168.1.102", 4);
serverWeightMap.put("192.168.1.103", 1);
serverWeightMap.put("192.168.1.104", 1);
// 权重为3
serverWeightMap.put("192.168.1.105", 3);
serverWeightMap.put("192.168.1.106", 1);
// 权重为2
serverWeightMap.put("192.168.1.107", 2);
serverWeightMap.put("192.168.1.108", 1);
serverWeightMap.put("192.168.1.109", 1);
serverWeightMap.put("192.168.1.110", 1);
}
}

轮询(Round Robin)法

轮询法即Round Robin法,其代码实现大致如下:

 public class RoundRobin
{
private static Integer pos = 0; public static String getServer()
{
// 重建一个Map,避免服务器的上下线导致的并发问题
Map<String, Integer> serverMap =
new HashMap<String, Integer>();
serverMap.putAll(IpMap.serverWeightMap); // 取得Ip地址List
Set<String> keySet = serverMap.keySet();
ArrayList<String> keyList = new ArrayList<String>();
keyList.addAll(keySet); String server = null;
synchronized (pos)
{
if (pos > keySet.size())
pos = 0;
server = keyList.get(pos);
pos ++;
} return server;
}
}

由于serverWeightMap中的地址列表是动态的,随时可能有机器上线、下线或者宕机,因此为了避免可能出现的并发问题,方法内部要新建局部变量serverMap,现将serverMap中的内容复制到线程本地,以避免被多个线程修改。这样可能会引入新的问题,复制以后serverWeightMap的修改无法反映给serverMap,也就是说这一轮选择服务器的过程中,新增服务器或者下线服务器,负载均衡算法将无法获知。新增无所谓,如果有服务器下线或者宕机,那么可能会访问到不存在的地址。因此,服务调用端需要有相应的容错处理,比如重新发起一次server选择并调用

对于当前轮询的位置变量pos,为了保证服务器选择的顺序性,需要在操作时对其加锁,使得同一时刻只能有一个线程可以修改pos的值,否则当pos变量被并发修改,则无法保证服务器选择的顺序性,甚至有可能导致keyList数组越界。

轮询法的优点在于:试图做到请求转移的绝对均衡

轮询法的缺点在于:为了做到请求转移的绝对均衡,必须付出相当大的代价,因为为了保证pos变量修改的互斥性,需要引入重量级的悲观锁synchronized,这将会导致该段轮询代码的并发吞吐量发生明显的下降

随机(Random)法

通过系统随机函数,根据后端服务器列表的大小值来随机选择其中一台进行访问。由概率统计理论可以得知,随着调用量的增大,其实际效果越来越接近于平均分配流量到每一台后端服务器,也就是轮询的效果。

随机法的代码实现大致如下:

 public class Random
{
public static String getServer()
{
// 重建一个Map,避免服务器的上下线导致的并发问题
Map<String, Integer> serverMap =
new HashMap<String, Integer>();
serverMap.putAll(IpMap.serverWeightMap); // 取得Ip地址List
Set<String> keySet = serverMap.keySet();
ArrayList<String> keyList = new ArrayList<String>();
keyList.addAll(keySet); java.util.Random random = new java.util.Random();
int randomPos = random.nextInt(keyList.size()); return keyList.get(randomPos);
}
}

整体代码思路和轮询法一致,先重建serverMap,再获取到server列表。在选取server的时候,通过Random的nextInt方法取0~keyList.size()区间的一个随机值,从而从服务器列表中随机获取到一台服务器地址进行返回。基于概率统计的理论,吞吐量越大,随机算法的效果越接近于轮询算法的效果

源地址哈希(Hash)法

源地址哈希的思想是获取客户端访问的IP地址值,通过哈希函数计算得到一个数值,用该数值对服务器列表的大小进行取模运算,得到的结果便是要访问的服务器的序号。源地址哈希算法的代码实现大致如下:

 public class Hash
{
public static String getServer()
{
// 重建一个Map,避免服务器的上下线导致的并发问题
Map<String, Integer> serverMap =
new HashMap<String, Integer>();
serverMap.putAll(IpMap.serverWeightMap); // 取得Ip地址List
Set<String> keySet = serverMap.keySet();
ArrayList<String> keyList = new ArrayList<String>();
keyList.addAll(keySet); // 在Web应用中可通过HttpServlet的getRemoteIp方法获取
String remoteIp = "127.0.0.1";
int hashCode = remoteIp.hashCode();
int serverListSize = keyList.size();
int serverPos = hashCode % serverListSize; return keyList.get(serverPos);
}
}

前两部分和轮询法、随机法一样就不说了,差别在于路由选择部分。通过客户端的ip也就是remoteIp,取得它的Hash值,对服务器列表的大小取模,结果便是选用的服务器在服务器列表中的索引值。

源地址哈希法的优点在于:保证了相同客户端IP地址将会被哈希到同一台后端服务器,直到后端服务器列表变更。根据此特性可以在服务消费者与服务提供者之间建立有状态的session会话

源地址哈希算法的缺点在于:除非集群中服务器的非常稳定,基本不会上下线,否则一旦有服务器上线、下线,那么通过源地址哈希算法路由到的服务器是服务器上线、下线前路由到的服务器的概率非常低,如果是session则取不到session,如果是缓存则可能引发"雪崩"。如果这么解释不适合明白,可以看我之前的一篇文章MemCache超详细解读,一致性Hash算法部分。

加权轮询(Weight Round Robin)法

不同的服务器可能机器配置和当前系统的负载并不相同,因此它们的抗压能力也不尽相同,给配置高、负载低的机器配置更高的权重,让其处理更多的请求,而低配置、高负载的机器,则给其分配较低的权重,降低其系统负载。加权轮询法可以很好地处理这一问题,并将请求顺序按照权重分配到后端。加权轮询法的代码实现大致如下:

 public class WeightRoundRobin
{
private static Integer pos; public static String getServer()
{
// 重建一个Map,避免服务器的上下线导致的并发问题
Map<String, Integer> serverMap =
new HashMap<String, Integer>();
serverMap.putAll(IpMap.serverWeightMap); // 取得Ip地址List
Set<String> keySet = serverMap.keySet();
Iterator<String> iterator = keySet.iterator(); List<String> serverList = new ArrayList<String>();
while (iterator.hasNext())
{
String server = iterator.next();
int weight = serverMap.get(server);
for (int i = 0; i < weight; i++)
serverList.add(server);
} String server = null;
synchronized (pos)
{
if (pos > keySet.size())
pos = 0;
server = serverList.get(pos);
pos ++;
} return server;
}
}

与轮询法类似,只是在获取服务器地址之前增加了一段权重计算的代码,根据权重的大小,将地址重复地增加到服务器地址列表中,权重越大,该服务器每轮所获得的请求数量越多。

加权随机(Weight Random)法

与加权轮询法类似,加权随机法也是根据后端服务器不同的配置和负载情况来配置不同的权重。不同的是,它是按照权重来随机选择服务器的,而不是顺序。加权随机法的代码实现如下:

 public class WeightRandom
{
public static String getServer()
{
// 重建一个Map,避免服务器的上下线导致的并发问题
Map<String, Integer> serverMap =
new HashMap<String, Integer>();
serverMap.putAll(IpMap.serverWeightMap); // 取得Ip地址List
Set<String> keySet = serverMap.keySet();
Iterator<String> iterator = keySet.iterator(); List<String> serverList = new ArrayList<String>();
while (iterator.hasNext())
{
String server = iterator.next();
int weight = serverMap.get(server);
for (int i = 0; i < weight; i++)
serverList.add(server);
} java.util.Random random = new java.util.Random();
int randomPos = random.nextInt(serverList.size()); return serverList.get(randomPos);
}
}

这段代码相当于是随机法和加权轮询法的结合,比较好理解,就不解释了。

最小连接数(Least Connections)法

前面几种方法费尽心思来实现服务消费者请求次数分配的均衡,当然这么做是没错的,可以为后端的多台服务器平均分配工作量,最大程度地提高服务器的利用率,但是实际情况是否真的如此?实际情况中,请求次数的均衡真的能代表负载的均衡吗?这是一个值得思考的问题。

上面的问题,再换一个角度来说就是:以后端服务器的视角来观察系统的负载,而非请求发起方来观察。最小连接数法便属于此类。

最小连接数算法比较灵活和智能,由于后端服务器的配置不尽相同,对于请求的处理有快有慢,它正是根据后端服务器当前的连接情况,动态地选取其中当前积压连接数最少的一台服务器来处理当前请求,尽可能地提高后端服务器的利用效率,将负载合理地分流到每一台机器。由于最小连接数设计服务器连接数的汇总和感知,设计与实现较为繁琐,此处就不说它的实现了。

几种简单的负载均衡算法及其Java代码实现的更多相关文章

  1. Nginx几种负载均衡算法及配置实例

    本文装载自: https://yq.aliyun.com/articles/114683 Nginx负载均衡(工作在七层"应用层")功能主要是通过upstream模块实现,Ngin ...

  2. nginx的概念与几种负载均衡算法

    Nginx的背景 Nginx和Apache一样都是一种WEB服务器.基于REST架构风格,以URI(Uniform Resources Identifier,统一资源描述符)或URL(Uniform ...

  3. f5负载均衡算法

    负载均衡使用一种算法或公式来确定由哪一个后台服务器接收流量 负载均衡是基于连接的 1.静态负载均衡算法:以固定方式分发连接 轮询算法(Round Robin):将请求依次顺序循环地分发给服务器,从1到 ...

  4. RabbitMQ客户端负载均衡算法

    负载均衡(Load balance)是一种计算机网络技术,用于在多个计算机(计算机集群).网络连接.CPU.磁盘驱动器或其他资源中分配负载,以达到最佳资源使用.最大化吞吐率.最小响应时间以及避免过载的 ...

  5. haproxy支持的负载均衡算法详解

    目前haproxy支持的负载均衡算法有如下8种: 1.roundrobin 表示简单的轮询,每个服务器根据权重轮流使用,在服务器的处理时间平均分配的情况下这是最流畅和公平的算法.该算法是动态的,对于实 ...

  6. spring-cloud-starter-ribbon提供客户端的软件负载均衡算法

    Ribbon是什么? Ribbon是Netflix发布的开源项目,主要功能是提供客户端的软件负载均衡算法,将Netflix的中间层服务连接在一起.Ribbon客户端组件提供一系列完善的配置项如连接超时 ...

  7. 负载均衡算法,轮询方式 大话设计模式之工厂模式 C#

    负载均衡算法,轮询方式 2018-04-13 17:37 by 天才卧龙, 13 阅读, 0 评论, 收藏, 编辑 学无止境,精益求精 十年河东,十年河西,莫欺少年穷 学历代表你的过去,能力代表你的现 ...

  8. QPS 提升60%,揭秘阿里巴巴轻量级开源 Web 服务器 Tengine 负载均衡算法

    前言 在阿里七层流量入口接入层(Application Gateway)场景下, Nginx 官方的Smooth Weighted Round-Robin( SWRR )负载均衡算法已经无法再完美施展 ...

  9. SpringCloud全家桶学习之客户端负载均衡及自定义负载均衡算法----Ribbon(三)

    一.Ribbon是什么? Spring Cloud Ribbon是基于Netflix Ribbon实现的一套客户端  负载均衡的工具(这里区别于nginx的负载均衡).简单来说,Ribbon是Netf ...

随机推荐

  1. 11g新特性-使用DNFS

    NFS相信应该都很熟悉了,但是我们对它的性能一直有所诟病.Oracle在10g版本通过允许对数据库文件直接IO引入ASM.在11g版本中,Oracle对NFS提供了类似的增强,为了改进NFS的性能,开 ...

  2. 通过配置web.config使WCF向外提供HTTPS的Restful Service

    如何通过WCF向外提供Restful的Service请看如下链接 http://www.cnblogs.com/mingmingruyuedlut/p/4223116.html 那么如何通过对web. ...

  3. Quartz任务调度基本使用

    转自:http://www.cnblogs.com/bingoidea/archive/2009/08/05/1539656.html 上一篇:定时器的实现.Java定时器Timer和Quartz介绍 ...

  4. Beginning Scala study note(4) Functional Programming in Scala

    1. Functional programming treats computation as the evaluation of mathematical and avoids state and ...

  5. Beta工作比例(Transcend)

    Beta工作比例 成员 工作 黄志明 10% 洪志兴 10% 李佳恺 17 % 巫振格 17 % 肖承志 10 % 李严 16 % 牛妍辉 stripes 20%

  6. eclipse的maven项目,如何使用java run main函数

    项目使用maven管理,一般说来就使用jetty:run了.但是对于做功能测试和集成测试的用例,需要使用自定义的quickrun来运行进行测试环境的参数设定和功能隔离,google一番发现maven有 ...

  7. mac-改造你的terminal

    今天在知乎上看到了一篇关于<程序员如何优雅使用Mac>,里面介绍了不少Mac的高端使用技巧,其中关于terminal的部分更是深深的吸引了我,于是我也开始了我的terminal改造计划. ...

  8. jQuery.rotate.js参数

    CSS3 提供了多种变形效果,比如矩阵变形.位移.缩放.旋转和倾斜等等,让页面更加生动活泼有趣,不再一动不动.然后 IE10 以下版本的浏览器不支持 CSS3 变形,虽然 IE 有私有属性滤镜(fil ...

  9. 【Oracle】dba_jobs字段说明

    dba_jobs 1 字段(列) 数据类型 描述 JOB NUMBER 任务的唯一标示号 LOG_USER ) 提交任务的用户 PRIV_USER ) 赋予任务权限的用户 SCHEMA_USER ) ...

  10. Building a RESTful Web Service

    Reference: https://spring.io/guides/gs/rest-service/ 参照上述链接进行操作,使用gradle build. 因为total new to this. ...