poj3311

题意

给出一个矩阵,i 行 j 列表示位置 i 到 j 的时间。

求从 0 点出发经过 1 到 n 所有点后并返回 0 点最短耗时。

分析

先用 Floyd 算法,求出两点之间最短路, dp[S][i] 表示访问到 i 这个点时所有点的状态,S 为二进制数,表示这个点是否访问过。

那么转移就是对于 S 中未访问过的点 j, dp[S | (1 << j)][j] = max{ dp[S][i] + dis[i][j] }(i 为所有已经访问过的点) 。

code

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;
const int MAXN = (1 << 12) + 10;
const int INF = 1e9;
int dp[MAXN][12];
int dis[12][12];
int main() {
int n;
while(cin >> n && n) {
n++;
memset(dis, 0x3f, sizeof dis);
memset(dp, 0x3f, sizeof dp);
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
int x;
cin >> x;
dis[i][j] = x;
}
}
for(int k = 0; k < n; k++) {
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++)
dis[i][j] = min(dis[i][j], dis[i][k] + dis[k][j]);
}
}
for(int i = 0; i < (1 << n); i++) {
for(int j = 0; j < n; j++) {
if(!((i >> j) & 1)) {
int s = (1 << j);
dp[s][j] = dis[0][j];
for(int k = 0; k < n; k++) {
if((i >> k) & 1) {
dp[i | s][j] = min(dp[i | s][j], dp[i][k] + dis[k][j]);
}
}
}
}
}
int ans = INF;
for(int j = 1; j < n; j++) {
ans = min(ans, dp[(1 << n) - 2][j] + dis[j][0]);
}
cout << ans << endl;
}
return 0;
}

poj3311(状态压缩DP)的更多相关文章

  1. [poj3311]Hie with the Pie(Floyd+状态压缩DP)

    题意:tsp问题,经过图中所有的点并回到原点的最短距离. 解题关键:floyd+状态压缩dp,注意floyd时k必须在最外层 转移方程:$dp[S][i] = \min (dp[S \wedge (1 ...

  2. DP大作战—状态压缩dp

    题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...

  3. 状态压缩DP(大佬写的很好,转来看)

    奉上大佬博客 https://blog.csdn.net/accry/article/details/6607703 动态规划本来就很抽象,状态的设定和状态的转移都不好把握,而状态压缩的动态规划解决的 ...

  4. hoj2662 状态压缩dp

    Pieces Assignment My Tags   (Edit)   Source : zhouguyue   Time limit : 1 sec   Memory limit : 64 M S ...

  5. POJ 3254 Corn Fields(状态压缩DP)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4739   Accepted: 2506 Descr ...

  6. [知识点]状态压缩DP

    // 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...

  7. HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP

    题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...

  8. 状态压缩dp问题

    问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...

  9. BZOJ-1226 学校食堂Dining 状态压缩DP

    1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...

  10. Marriage Ceremonies(状态压缩dp)

     Marriage Ceremonies Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

随机推荐

  1. UVa 11806 - Cheerleaders (组合计数+容斥原理)

    <训练指南>p.108 #include <cstdio> #include <cstring> #include <cstdlib> using na ...

  2. 【转】Unity3D 关于贝赛尔曲线,平滑曲线,平滑路径,动态曲线

    http://tieba.baidu.com/p/2460036481 很多时候我们需要的并不是直线和折线,而是平滑的曲线,比如寻路系统,某些物体的曲线运动,都需要平滑曲线来保证效果,今天试了一下,通 ...

  3. Struts1 Spring2 iBatis2 框架的集成

    这个是属于比较老的框架了,奈何现在公司用的产品就是如此,闲来就搭一个集成框架吧 依赖jar包 antlr-.jar aspectj-.jar aspectjrt.jar aspectjweaver-. ...

  4. KNN算法在保险业精准营销中的应用

    版权所有,可以转载,禁止修改.转载请注明作者以及原文链接. 一.KNN算法概述 KNN是Machine Learning领域一个简单又实用的算法,与之前讨论过的算法主要存在两点不同: 它是一种非参方法 ...

  5. 【bzoj1856】[Scoi2010]字符串 Catalan数

    题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足 ...

  6. Android M中 JNI的入门学习

    今年谷歌推出了Android 6.0,作为安卓开发人员,对其学习掌握肯定是必不可少的,今天小编和大家分享的就是Android 6.0中的 JNI相关知识,这是在一个安卓教程网上看到的内容,感觉很不错, ...

  7. BZOJ2957 楼房重建 【线段树】

    题目 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题,我们考虑这些事件发生在一个二维 ...

  8. 02 Java 基础语法

    在开始 Java 基本语法之前,先说明 Java 程序的基本规范: 大小写敏感,例如 Person 和 person 是不同的 类名首字母大写,如果类名由多个单词组成,每个单词首字母都大写,例如 He ...

  9. JS实现 java的Map

    Map = function () { this.objects = new Object(); // 加入元素 this.put = function (key, value) { this.obj ...

  10. js实时监听input中值得变化

    <!DOCTYPE html> <html> <head> <title>zepto</title> <meta name=" ...