[BZOJ2442][Usaco2011 Open]修剪草坪 dp+单调队列优化
2442: [Usaco2011 Open]修剪草坪
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1118 Solved: 569
[Submit][Status][Discuss]
Description
在一年前赢得了小镇的最佳草坪比赛后,FJ变得很懒,再也没有修剪过草坪。现在,
新一轮的最佳草坪比赛又开始了,FJ希望能够再次夺冠。
然而,FJ的草坪非常脏乱,因此,FJ只能够让他的奶牛来完成这项工作。FJ有N
(1 <= N <= 100,000)只排成一排的奶牛,编号为1...N。每只奶牛的效率是不同的,
奶牛i的效率为E_i(0 <= E_i <= 1,000,000,000)。
靠近的奶牛们很熟悉,因此,如果FJ安排超过K只连续的奶牛,那么,这些奶牛就会罢工
去开派对:)。因此,现在FJ需要你的帮助,计算FJ可以得到的最大效率,并且该方案中
没有连续的超过K只奶牛。
Input
* 第一行:空格隔开的两个整数N和K
* 第二到N+1行:第i+1行有一个整数E_i
Output
* 第一行:一个值,表示FJ可以得到的最大的效率值。
Sample Input
1
2
3
4
5
输入解释:
FJ有5只奶牛,他们的效率为1,2,3,4,5。他们希望选取效率总和最大的奶牛,但是
他不能选取超过2只连续的奶牛
Sample Output
FJ可以选择出了第三只以外的其他奶牛,总的效率为1+2+4+5=12。
HINT
Source
考虑求反过来的最小值,即选一些牛不选,两个牛之间的距离不能超过m的最小值。
显然用单调队列维护即可。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define LL long long
using namespace std;
int n,m;
LL a[];
LL f[];
struct data {
LL val,w;
}q[];
int main(){
LL sum=;
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){scanf("%lld",&a[i]);sum+=a[i];}
int h=,t=;
q[].w=;q[].val=;
for(int i=;i<=n;i++) {
while(h<t&&q[h].w<i-m-) h++;
f[i]=q[h].val+a[i];
while(f[i]<q[t-].val&&h<t) t--;
q[t++]=(data){f[i],i};
}
LL ans=1LL<<;
for(int i=n;i>=n-m;i--) ans=min(ans,f[i]);
printf("%lld",sum-ans);
return ;
}
[BZOJ2442][Usaco2011 Open]修剪草坪 dp+单调队列优化的更多相关文章
- BZOJ 2442 [Usaco2011 Open]修剪草坪:单调队列优化dp
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2442 题意: 有n个数a[i]从左到右排成一排. 你可以任意选数,但是连续的数不能超过k个 ...
- BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP
BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP 题意: N头牛,每头牛有一个权值,选择一些牛,要求连续的不能超过k个,求选择牛的权值和最大值 分析: 先考虑暴力DP,f ...
- [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)
DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...
- bzoj2442[Usaco2011 Open]修剪草坪 单调队列优化dp
2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1159 Solved: 593[Submit] ...
- BZOJ2442 Usaco2011 Open修剪草坪(动态规划+单调队列)
显然可以dp.显然可以单调队列优化一下. #include<iostream> #include<cstdio> #include<cmath> #include& ...
- BZOJ2442: [Usaco2011 Open]修剪草坪
2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 500 Solved: 244[Submit][ ...
- BZOJ 2442: [Usaco2011 Open]修剪草坪( dp )
dp dp[ i ] 表示第 i 个不选 , 前 i 个的选择合法的最小损失 , dp[ i ] = min( dp[ j ] ) ( max( 0 , i - 1 - k ) <= j < ...
- Luogu 2627 修建草坪 (动态规划Dp + 单调队列优化)
题意: 已知一个序列 { a [ i ] } ,求取出从中若干不大于 KK 的区间,求这些区间和的最大值. 细节: 没有细节???感觉没有??? 分析: 听说有两种方法!!! 好吧实际上是等价的只是看 ...
- 1023: [SHOI2008]cactus仙人掌图(DP+单调队列优化)
这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= = 然后,看到这种题,首先必须的就是缩点= = 缩点完之后呢,变成在树上找最长路了= =直接树形dp了 那么那些 ...
随机推荐
- mutable c++
The keyword mutable is used to allow a particular data member of const object to be modified. This i ...
- Java的接口和抽象类深入理解
对于面向对象编程来说,抽象是它的一大特征之一.在Java中,可以通过两种形式来体现OOP的抽象:接口和抽象类.这两者确实有很多相似的地方,看了一整天别人怎么说,大致总结如下: 一.抽象类 在了解抽象类 ...
- iOS程序执行顺序和UIViewController 的生命周期(整理)
说明:此文是自己的总结笔记,主要参考: iOS程序的启动执行顺序 AppDelegate 及 UIViewController 的生命周期 UIView的生命周期 言叶之庭.jpeg 一. iOS程序 ...
- Mybatis基本用法
搭建mybatis环境 1, 导入需要的jar包 mybatis-*.*.*.jar ojdbc6.jar 2, 配置mybatis的总配置文件: mybatis-config.xml 配置根标签 & ...
- JFinal 添加Druid插件
第一步:添加依赖 <dependency> <groupId>com.alibaba</groupId> <artifactId>druid</a ...
- Python lambda介绍
在学习python的过程中,lambda的语法时常会使人感到困惑,lambda是什么,为什么要使用lambda,是不是必须使用lambda? 下面就上面的问题进行一下解答. 1.lambda是什么? ...
- ssh.sh_for_ubuntu1604
#!/bin/bash sed -i 's/PermitRootLogin prohibit-password/PermitRootLogin yes/g' /etc/ssh/sshd_config ...
- vue 三目运算
:class="followed ? 'btn-success':'btn-secondary'"
- 决策树与随机森林Adaboost算法
一. 决策树 决策树(Decision Tree)及其变种是另一类将输入空间分成不同的区域,每个区域有独立参数的算法.决策树分类算法是一种基于实例的归纳学习方法,它能从给定的无序的训练样本中,提炼出树 ...
- hdu 1142 最短路+记忆化
最短路+记忆化搜索HDU 1142 A Walk Through the Forest链接:http://acm.hdu.edu.cn/showproblem.php?pid=1142 > 题意 ...