BZOJ 2431 [HAOI2009]逆序对数列:dp 逆序对
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2431
题意:
给定n,k,问你有多少个由1~n组成的排列,使得逆序对个数恰好为k个。
题解:
表示状态:
dp[i][j] = num of sequences
i:已经用了1~i之间的数(在这一步放了数字i)
j:逆序对个数为j
找出答案:
ans = dp[n][k]
如何转移:
在当前这一步要放数字i。
所以要将i插入一个由1~i-1组成的排列中。
若将i插入位置x(0 <= x <= i-1),则新添的逆序对个数为x。
所以:
dp[i][j] = ∑ dp[i-1][j-x]
即:
dp[i][j] = ∑ dp[i-1][j-i+1 to j]
由于裸dp复杂度为O(N^3) = O(10^9),所以加一个前缀和优化。
边界条件:
dp[1][0] = 1
others = 0
AC Code:
// state expression:
// dp[i][j] = num of sequences
// i: considered number i
// j: there is j inversion pairs
//
// find the answer:
// ans = dp[n][k]
//
// transferring:
// dp[i][j] = sigma dp[i-1][j-i+1 to j]
//
// boundary:
// dp[1][0] = 1
#include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 1005
#define MAX_K 1005
#define MOD 10000 using namespace std; int n,t;
int dp[MAX_N][MAX_K];
int sum[MAX_N][MAX_K]; void read()
{
cin>>n>>t;
} void update_sum(int i,int j,int a)
{
if(j==) sum[i][j]=a;
else sum[i][j]=(sum[i][j-]+a)%MOD;
} int query_sum(int i,int x,int y)
{
if(x==) return sum[i][y];
else return ((sum[i][y]-sum[i][x-])%MOD+MOD)%MOD;
} void solve()
{
memset(dp,,sizeof(dp));
memset(sum,,sizeof(sum));
dp[][]=;
for(int i=;i<=t;i++)
{
sum[][i]=;
}
for(int i=;i<=n;i++)
{
for(int j=;j<=t;j++)
{
dp[i][j]=query_sum(i-,max(,j-i+),j);
update_sum(i,j,dp[i][j]);
}
}
} void print()
{
cout<<dp[n][t]<<endl;
} int main()
{
read();
solve();
print();
}
BZOJ 2431 [HAOI2009]逆序对数列:dp 逆序对的更多相关文章
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- BZOJ 2431 逆序对数列 DP
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MB Description 对于一个数列{ai},如果有i< j且ai> ...
- BZOJ 2431: [HAOI2009]逆序对数列【dp】
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序 ...
- Bzoj 2431 HAOI2009 逆序对数列
Description 对于一个数列{ai},如果有i**<**j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数. ...
- [bzoj 2431][HAOI2009]逆序对数列(递推+连续和优化)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2431 分析: f(i,j)表示前i个数字逆序对数目为j时候的方案数 那么有f(i,j) ...
- BZOJ2431:[HAOI2009]逆序对数列(DP,差分)
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...
- 【bzoj2431】[HAOI2009]逆序对数列 dp
题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...
- [bzoj2431][HAOI2009][逆序对数列] (dp计数)
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...
- 【BZOJ2431】【HAOI2009】逆序对数列 DP
题目大意 问你有多少个由\(n\)个数组成的,逆序对个数为\(k\)的排列. \(n,k\leq 1000\) 题解 我们考虑从小到大插入这\(n\)个数. 设当前插入了\(i\)个数,插入下一个数可 ...
随机推荐
- Python内置函数之super()
super(type[,object-or-type]) super()的作用在于类继承方面. 他可以实现不更改类内部代码,但是改变类的父类. 例子: 一般我们继承类的方式: >>> ...
- 启动avd Android模拟器缓慢 HAXM自动安装失败
问题1.更新Android sdk镜像,腾讯镜像地址 android-mirror.bugly.qq.com 使用方法如图 问题2.自动更新HAXM失败解决方法 手动下载地址 http://softw ...
- 2018年EI收录中文期刊目录【转】
[转]2018年EI收录中文期刊目录 Elsevier官网于2018年1月1日更新了EI Compendex目录,共收录中文期刊158种,其中新增期刊5种. 序号 中文刊名 收录情况 1 声学学报 保 ...
- Apache配置压缩优化时报错——undefined symbol: inflateEnd
Apache配置压缩优化时报错——undefined symbol: inflateEnd 环境:CentOS 6.4 软件版本:httpd-2.4.6 apr-1.4.8 apr-util-1.5. ...
- 第三方-Swift2.0后Alamofire的使用方法
第一部分,配置项目 首先我们创建一个工程如下图 在此只讲纯手打拉第三方框架的方法 然后把下载的Alamofire解压文件全部放进创建的项目文件夹中,如下图 关键时刻到了哦,集中精神,注意!!! 这个图 ...
- 一个关于运维人员做事的很好的case,拿出来和大家共勉
很久没有写KM了,最近lester这边在梳理CDB这边存在的问题,并推动那些问题解决措施的落地.无疑当前CDB存在比较多的问题,也有很多坑.需要我们运维和开发的同学多思考问题的根源和解决办法,并付诸实 ...
- Jmeter 04 JMeter 负载与监听
1. 场景设计 2. 场景设置 3. JMeter性能参数配置 4. 测试监听
- poj2115[扩展欧几里德]
C Looooops Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22260 Accepted: 6125 Descr ...
- 【BZOJ3230】相似子串 后缀数组+二分+RMQ
[BZOJ3230]相似子串 Description Input 输入第1行,包含3个整数N,Q.Q代表询问组数.第2行是字符串S.接下来Q行,每行两个整数i和j.(1≤i≤j). Output 输出 ...
- jQuery.callbacks 注释
(function( jQuery ) { // String to Object flags format cache var flagsCache = {}; // Convert String- ...