哈哈,好久没写博客了。。。。最近懒癌发作~~主要是因为心情不太好啊,做什么事情都不太顺心,不过已经过去啦。最近一直忙着公司的项目,想用这个网络,就给大家带来了的这篇文章。可能比较老,来自ICCV 2015的一篇关于细粒度分类的文章,文章:B-CNN。由于文章比较简单,我就不介绍的那么详细啦~

科普下:粗粒度与细粒度分类

粗粒度:比如猫狗猪这种差别比较大的。

细粒度:狗类别中,识别是什么品种的狗,这就是细粒度分类。

B-CNN框架:

从图中可以看出,其实就是两个卷积神经网络对图像进行特征抽取,然后用一个bilinear pooling 函数把CNN 抽取的两组特征进行结合,最后代入softmax层进行分类。

在一般的深度学习模型中,都是由一个神经网络构成的,在这里,有两个神经网络 A

和 B,输入图像首先被调整到448 × 448大小,然后用这两个网络分别提取该幅图像的特征,在图像的每一个位置,两个网络分别生成1 × 512大小的特征,在每一个位置 对两个网络提取的特征A(l)和B(l)做外积操作:

得到这个位置的双线性特征,大小为512X512。

接下来采用求和池化方式,将所有位置得到的双线性特征进行求和作为本幅

图像的特征:

它的大小也为 512 × 512,接下来对该双线性特征进行如下计算:

得到它的带符号平方根,并进行正则化:

以此作为该幅图片的特征,并用来分类。这个双线性特征比单个卷积网络提

取的特征在分类中获得更好的效果,两个卷积神经网络的作用在这里分别相当于

区域检测和特征提取。因此,它一方面避免了传统方法中大量的人工标记操作,

同时也获得了较高的准确率。

在训练过程中,两个网络可以同时被训练,并且整个训练过程是端到端的,

已知 X的损失函数梯度为,A和 B 的损失函数梯度由链式法则求得:

这里的网络 A和网络 B 可以是两个对称的网络,也可以是两个不对称的网

络.文中分别用了VGG-16 和VGG-19两种网络。

关于为什么用向量的外积,我想是吸收两组CNN 抽取的特征,然后进项特征融合,其实在这一步,我们可以做就很多东西。我现在发的有一篇文章,也有类似的思想。

 

首先说说内外积的几何意义

向量ab的内积是长度为 |a||b|cosθ的标量,是向量a在向量b方向上的分量

而向量ab的外积是长度为 |a||b|sinθ、并垂直于向量ab的矢量

这就说明向量ab的外积和向量ab是不在同一平面内,或者说,向量ab在平面上被我们看到了的话,外积我们是看不到的,他应该是一个旋转过程,

所以说,外积在物理上(我感觉运动学会用到)可以说是,对运动产生作用的。

 

ICCV 2015 B-CNN细粒度分类的更多相关文章

  1. (转) ICCV 2015:21篇最火爆研究论文

          ICCV 2015:21篇最火爆研究论文 ICCV 2015: Twenty one hottest research papers   “Geometry vs Recognition” ...

  2. CAP:多重注意力机制,有趣的细粒度分类方案 | AAAI 2021

    论文提出细粒度分类解决方案CAP,通过上下文感知的注意力机制来帮助模型发现细微的特征变化.除了像素级别的注意力机制,还有区域级别的注意力机制以及局部特征编码方法,与以往的视觉方案很不同,值得一看 来源 ...

  3. CNN车型分类总结

    最近在做一个CNN车型分类的任务,首先先简要介绍一下这个任务. 总共30个类,训练集图片为车型图片,类似监控拍摄的车型图片,训练集测试集安6:4分,训练集有22302份数据,测试集有14893份数据. ...

  4. AAAI 2020 | 反向R?削弱显著特征为细粒度分类带来提升

    论文提出了类似于dropout作用的diversification block,通过抑制特征图的高响应区域来反向提高模型的特征提取能力,在损失函数方面,提出专注于top-k类别的gradient-bo ...

  5. ACNet: 特别的想法,腾讯提出结合注意力卷积的二叉神经树进行细粒度分类 | CVPR 2020

    论文提出了结合注意力卷积的二叉神经树进行弱监督的细粒度分类,在树结构的边上结合了注意力卷积操作,在每个节点使用路由函数来定义从根节点到叶子节点的计算路径,结合所有叶子节点的预测值进行最终的预测,论文的 ...

  6. CNN 文本分类

    谈到文本分类,就不得不谈谈CNN(Convolutional Neural Networks).这个经典的结构在文本分类中取得了不俗的结果,而运用在这里的卷积可以分为1d .2d甚至是3d的.  下面 ...

  7. [DL学习笔记]从人工神经网络到卷积神经网络_3_使用tensorflow搭建CNN来分类not_MNIST数据(有一些问题)

    3:用tensorflow搭个神经网络出来 为什么用tensorflow呢,应为谷歌是亲爹啊,虽然有些人说caffe更适合图像啊mxnet效率更高等等,但爸爸就是爸爸,Android都能那么火,一个道 ...

  8. CNN文本分类

    CNN用于文本分类本就是一个不完美的解决方案,因为CNN要求输入都是一定长度的,而对于文本分类问题,文本序列是不定长的,RNN可以完美解决序列不定长问题, 因为RNN不要求输入是一定长度的.那么对于C ...

  9. pytorch -- CNN 文本分类 -- 《 Convolutional Neural Networks for Sentence Classification》

    论文  < Convolutional Neural Networks for Sentence Classification>通过CNN实现了文本分类. 论文地址: 666666 模型图 ...

随机推荐

  1. 删除数据库时提示数据库正在被使用,无法删除(Cannot drop database databasename because it is currently in use)的问题

    删除数据库时提示数据库正在被使用,无法删除(Cannot drop database databasename because it is currently in use)的问题   删除数据库时提 ...

  2. jenkins调用shell脚本 输出带颜色字体

    jenkins需要安装AnsiColor插件在构建环境项选择“color ansi console output” 安装插件AnsiColor shell 脚本相关颜色设置 echo -e " ...

  3. 改变UITextField的Placeholder颜色

    通过 attributedPlaceholder 属性来改变 if([textField respondsToSelector:@selector(setAttributedPlaceholder:) ...

  4. IOS7下,AVAudioRecorder需要注意的一点

    iOs7下,使用AVAudioRecorder录音的时候,会在顶部出现一个红框,或者红框一闪而过,这时候需要设置AVAudioSession,如下代码: AVAudioSession * sessio ...

  5. Fiddler 过滤器的使用

    只显示制定HOST的SESSION

  6. SpringSecurity---javaconfig:Hello Web Security

    © 版权声明:本文为博主原创文章,转载请注明出处 本文根据官方文档加上自己的理解,仅供参考 官方文档:https://docs.spring.io/spring-security/site/docs/ ...

  7. 浅谈&quot;壳&quot;(一)

    壳,即坚硬的外皮,当壳的厚度与其曲面率半径的比值小于0.5时.称为"薄壳".反之称为"厚壳".由壳演化来的胸甲,盾牌. 在计算机这个注重创意又不失从文化科技中汲 ...

  8. WAF绕过方法

    1.大小写绕过 这个大家都很熟悉,对于一些太垃圾的WAF效果显著,比如拦截了union,那就使用Union UnIoN等等绕过. 2.简单编码绕过 比如WAF检测关键字,那么我们让他检测不到就可以了. ...

  9. webview长按保存图片

    private String imgurl = ""; /***     * 功能:长按图片保存到手机     */    @Override    public void onC ...

  10. 配置Nginx防止直接用IP訪问Webserver

    看了非常多Nginx的配置,好像都忽略了ip直接訪问Web的问题.这样理论上不利于SEO优化,所以我们希望能够避免直接用IP訪问站点.而是域名訪问.详细怎么做呢.看以下. 官方文档中提供的方法: If ...