两个数据集中一个非常小,可以让小数据集存入缓存。在作业开始这些文件会被复制到运行task的节点上。 一开始,它的setup方法会检索缓存文件。

与reduce侧连接不同,Map侧连接需要等待参与连接的数据集满足如下条件:

1.除了连接键外,所有的输入都必须按照连接键排序。 输入的各种数据集必须有相同的分区数。 所有具有相同键的记录需要放在同一分区中。 当Map任务对其他Mapreduce作业的结果进行处理时(Cleanup时),Map侧的连接条件都自动满足 CompositeInputFormat类用于执行Map侧的连接,而输入和连接类型的配置可以通过属性指定。

2.如果其中一个数据集足够小,旁路的分布式通道可以用在Map侧的连接中。

实例:

输入:   

123(工厂)                       a(地址表):

Beijing Red Star,1                      1,Beijing

Shenzhen Thunder,3                       2,Guangzhou

Guangzhou Honda,2                     3,Shenzhen

Beijing Rising,1                        4,xian   

Guangzhou Development Bank,2

Tencent,3

Back of Beijing,1

思路:在map端中的cache载入地址表,在map阶段的setup()中,定义HashMap(),将字符串分割,放入HashMap中,然后在map阶段,利用hashmap。get(),得到对应的地址。

代码:

package mapreduce01;

import java.io.IOException;

import java.net.URI;

import java.util.HashMap;

import java.util.Map;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.LineReader;

public class Mapduan {

static String INPUT_PATH = "hdfs://master:9000/qq/123";

static String OUTPUT_PATH="hdfs://master:9000/output";

static class MyMapper extends Mapper<Object,Object,Text,Text>{

Text output_key = new Text();

Text output_value = new Text();

Map<String,String> addMap = new HashMap<String,String>();   //image  yingshe

protected void setup(Context context) throws java.io.IOException, java.lang.InterruptedException{

URI uri=context.getCacheFiles()[0];

Path path = new Path(uri);

FileSystem fs = path.getFileSystem(context.getConfiguration());

LineReader lineReader = new LineReader(fs.open(path));

Text line=new Text();

while(lineReader.readLine(line)>0){

String tokens[] = line.toString().split(",");

if(tokens!=null && tokens.length==2)

addMap.put(tokens[0], tokens[1]);

}

}

protected void map(Object key,Object value,Context context) throws IOException,InterruptedException{

String[] tokens = value.toString().split(",");

if(tokens!=null&&tokens.length==2){

output_key.set(tokens[0]);

String addrName = addMap.get(tokens[1].toString());

output_value.set(addrName);

context.write(output_key,output_value);

}

}

}

static class MyReduce extends Reducer<Text,Text,Text,Text> {

Text  output_key=new Text();

Text  output_value=new Text();

protected void reduce(Text key, Iterable<Text> values,Context context)  throws IOException,InterruptedException{

context.write(key,values.iterator().next());

}

}

public static void main(String[] args) throws Exception{

Path outputpath = new Path(OUTPUT_PATH);

Path cacheFile = new Path("hdfs://master:9000/qq/a");

Configuration conf = new Configuration();

FileSystem fs = outputpath.getFileSystem(conf);

if(fs.exists(outputpath)){

fs.delete(outputpath,true);

}

Job  job=Job.getInstance(conf);

FileInputFormat.setInputPaths(job,INPUT_PATH);

FileOutputFormat.setOutputPath(job, outputpath);

URI uri =cacheFile.toUri();

job.setCacheFiles(new URI[]{uri});  //set cache address

job.setMapperClass(MyMapper.class);

job.setReducerClass(MyReduce.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(Text.class);

job.waitForCompletion(true);

}

}

实验结果:

Back of Beijing Beijing

Beijing Red Star Beijing

Beijing Rising Beijing

Guangzhou Development Bank Guangzhou

Guangzhou Honda Guangzhou

Shenzhen Thunder Shenzhen

Tencent Shenzhen

map侧连接的更多相关文章

  1. Reduce侧连接

    1.reduce side join 在reduce端进行表的连接,该方法的特点就是操作简单,缺点是map端shffule后传递给reduce端的数据量过大,极大的降低了性能 连接方法: (1)map ...

  2. Hadoop的Map侧join

    写了关于Hadoop下载地址的Map侧join 和Reduce的join,今天我们就来在看另外一种比较中立的Join. SemiJoin,一般称为半链接,其原理是在Map侧过滤掉了一些不需要join的 ...

  3. MapReduce 示例:减少 Hadoop MapReduce 中的侧连接

    摘要:在排序和reducer 阶段,reduce 侧连接过程会产生巨大的网络I/O 流量,在这个阶段,相同键的值被聚集在一起. 本文分享自华为云社区<MapReduce 示例:减少 Hadoop ...

  4. 【Spark调优】:如果实在要shuffle,使用map侧预聚合的算子

    因业务上的需要,无可避免的一些运算一定要使用shuffle操作,无法用map类的算子来替代,那么尽量使用可以map侧预聚合的算子. map侧预聚合,是指在每个节点本地对相同的key进行一次聚合操作,类 ...

  5. BizTalk开发系列(九) MAP的连接方法

    BizTalk中的Map编辑器可以在源架构和目标架构创建连接.有三种创建连接的方式: 1.普通的连接方式,将左边的记录拖到右边. 2.根据结构自动连接,点击MAP的网格,在属性中选择结构(Struct ...

  6. BizTalk Map 累积连接字符串

    更多内容请查看:BizTalk动手实验系列目录                             BizTalk 开发系列 BizTalk 培训/项目开发/技术支持请联系:Email:cbcye ...

  7. 图片添加热点MAP之后连接无效的解决方法

    好些接触网店的同事都会遇到这个问题:就是明明给图片添加了热点超链接,但是点击图片就是没反应. 其实这个问题就是热点冲突,也就是说这个页面中至少有2个名称相同的热点导致热点冲突无法正确加载. 谷歌浏览器 ...

  8. Scala中List(Map1,Map2,Map3 ....) 转成一个Map

    这个问题研究好久...头大,不记得有fold用法了. fold函数:折叠,提供一个输入参数作为初始值,然后大括号中应用自定义fun函数并返回值. list.fold(Map()){(x,y)=> ...

  9. 通过win下的eclipse连接虚拟机中伪分布的hadoop进行调试

    VMware虚拟机配置Ubuntu桥接方式(Bridged)使虚拟机和宿主机能互相ping通, 通过win下的eclipse连接虚拟机中伪分布的hadoop进行调试 1.设置Bridged上网方式 V ...

随机推荐

  1. Page_Load事件与IsPostBack属性

    下面是一个登陆的界面: 我们的需求是:        第一次进入登陆界面时,用户名和密码应该为空,所以我们应该在Page_Load中将存放用户名和密码的两个文本框的内容清空.然后当我们单击登陆按钮时, ...

  2. 通过Python调用Spice-gtk

    序言 通过Virt Manager研究学习Spice gtk的Python方法 你将学到什么 Virt Manager研究 显示代码定位 首先我们使用Virt Manager来观察桌面连接窗口 然后我 ...

  3. node -- 安装及快速开始

    下载并安装 node下载地址:https://nodejs.org/en/download/ 安装就绪后,打开命令行,操作如下: shift+右键/Win+r->cmd 检测是否安装成功: no ...

  4. SnapKit swift实现高度自适应的新浪微博布局

    SnapKit swift版的自动布局框架,第一次使用感觉还不错. SnapKit是一个优秀的第三方自适应布局库,它可以让iOS.OS X应用更简单地实现自动布局(Auto Layout).GtiHu ...

  5. Python Day24

    AJAX 对于WEB应用程序:用户浏览器发送请求,服务器接收并处理请求,然后返回结果,往往返回就是字符串(HTML),浏览器将字符串(HTML)渲染并显示浏览器上. 1.传统的Web应用 一个简单操作 ...

  6. php微信公众号开发简单记录

    开发前准备:1.服务器 2.微信公众号测试号(有真实的账号更好) 测试号申请地址:https://mp.weixin.qq.com/debug/cgi-bin/sandbox?t=sandbox/lo ...

  7. Observer模式(观察者设计模式)

    Observer 设计模式? 在Observer模式中,当观察对象的状态发生变化时,会通知给观察者.Observer模式适用于根据对象状态进行相应处理的场景. Observer 并非主动观察,而是被动 ...

  8. Luogu P2833 等式 我是傻子x2

    又因为调一道水题而浪费时间...不过细节太多了$qwq$,暴露出自己代码能力的不足$QAQ$ 设$d=gcd(a,b)$,这题不是显然先解出来特解,即解出 $\frac{a}{d}x_0+\frac{ ...

  9. Angular2.0的学习(五)

    第五节课: 1.组件的输入输出属性 2.使用中间人模式传递数据 3.组件生命周期以及Angular的变化发现机制

  10. 024 Swap Nodes in Pairs 交换相邻结点

    给定一个链表,对每两个相邻的结点作交换并返回头节点.例如:给定 1->2->3->4,你应该返回 2->1->4->3.你的算法应该只使用额外的常数空间.不要修改列 ...