51nod 1250 排列与交换——dp
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1250
仔细思考dp。
第一问,考虑已知 i-1 个数有多少种方案。再放入一个数,它是最大的且在最后面,所以它的位置不同的话,就是不同的方案。它在特定的位置,其余部分的值就是 i-1 的值。
所以再用前缀和优化成 n^2 即可。k可减任意个2。
第二问,还是像上面一样考虑。但新来的数只会和前面的数交换一次。任何一种交换 k ( k>1 ) 次的方案都可以转换成前面的数先交换 k-1 次,再由新来的数交换一次。所以就能很方便地dp了。
还可以从逆序对的角度考虑第一问、从斯特林数的角度考虑第二问。反正式子是一样的。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=,mod=1e9+;
int n,k,dp[][N],c[][N],ans,u,v;
int main()
{
scanf("%d%d",&n,&k);
dp[][]=;
for(int i=;i<=k;i++) c[][i]=;
u=;v=;
for(int i=;i<=n;i++)
{
for(int j=;j<=k;j++)
{
dp[u][j]=(c[v][j]-(j-i>=?c[v][j-i]:)+mod)%mod;
c[u][j]=(dp[u][j]+(j?c[u][j-]:))%mod;
}
u=!u;v=!v;
}
for(int i=k;i>=;i-=) (ans+=dp[v][i])%=mod;
printf("%d ",ans); ans=;
u=;v=;
memset(dp[],,sizeof dp[]); dp[][]=;
for(int i=;i<=n;i++)
{
for(int j=;j<=k;j++)
dp[u][j]=(dp[v][j]+(j?(ll)dp[v][j-]*(i-)%mod:))%mod;
u=!u;v=!v;
}
for(int i=;i<=k;i++) (ans+=dp[v][i])%=mod;
printf("%d\n",ans);
return ;
}
51nod 1250 排列与交换——dp的更多相关文章
- 51Nod 1250 排列与交换 —— DP
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1250 看了半天... 把第一问想成逆序对的话似乎很容易想了,新加入 ...
- 51Nod 1250 排列与交换
Description 统计 \(1...n\) 的排列,恰好进行 \(k\) 次相邻交换和至多进行 \(k\) 次交换生成的不同的序列个数. Sol DP. 好妙的题啊... 首先看第一个问题. 对 ...
- [luoguP2606] [ZJOI2010]排列计数(DP)
传送门 如果能够根据题意看出这是一个堆的话,那么就有些思路了.. 首先堆顶必须是最小元素,然后左右儿子可以预处理出来都有多少个数, 把剩余的数任意分配给两个儿子,用排列组合即可 dp(now) = d ...
- php实现字符串的排列(交换)(递归考虑所有情况)
php实现字符串的排列(交换)(递归考虑所有情况) 一.总结 交换: 当有abc的时候,分别拿第一位和其它位交换,第一位固定,余下的位做递归,这样有考虑到所有情况,因为第一位只可能是所有的字母,那第一 ...
- 51nod 1020 逆序排列 递推DP
1020 逆序排列 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么 ...
- 51nod 1843 排列合并机(DP+组合)
题解链接 不过求ggg不用O(n2)DPO(n^2)DPO(n2)DP,g[n]g[n]g[n]直接就是卡特兰数的第n−1n-1n−1项.即: g[n]=(2(n−1)n−1)−(2(n−1)n−2) ...
- 51nod 1043 幸运号码(数位dp)
题目链接:51nod 1043 幸运号码 题解:dp[i][j]表示 i 个数和为 j 的总数(包含0开头情况) dp[i][j] = dp[i-1][j-k] i & 1 :这里用滚动数组节 ...
- 51nod 1092 回文字符串 (dp)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1092 这个题是poj-3280的简化版,这里只可以增加字符,设 dp[i ...
- 51Nod 1201 整数划分 (经典dp)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1201 题意不多说了. dp[i][j]表示i这个数划分成j个数 ...
随机推荐
- Webpack探索【1】--- 基础知识
本文主要说明Webpack的一些基础内容.
- 自定义弹窗 VS AlertDialog分享弹窗
一.摘要 弹窗通常用于提示用户进行某种操作,比如:点击分享按钮,弹窗分享对话框:双击返回按钮,弹窗退出对话框:下载文件,提示下载对话框等等,分享对话框/退出对话框/下载对话框,都可以直接使用Alert ...
- css position: relative,absolute具体解释
关于CSS中 position在布局中非常重要,查了非常多资料都说的非常难理解.以下说说个人的理解: 语法: position: relative | absolute relative: 对象遵循常 ...
- 全栈JavaScript之路( 二十四 )DOM2、DOM3, 不涉及XML命名空间的扩展
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/hatmore/article/details/37658167 (一)DocumentType 类型 ...
- 常用grads函数
GrADS的函数分两类, 一类是对格点/站点数据执行运算的,这一类我们姑且称之为分析函数; 另一类是脚本编程(gs)时使用的, 这后一类我们姑且称之为脚本函数. 第一类分析函数又分为格点分析和站点分析 ...
- 单链表(C语言实现)
链表结构: SList.h //-------------------------------------------------------------------------- /* **功能:应 ...
- Linux电源管理(3)-Generic PM之reboot过程【转】
本文转载自:http://www.wowotech.net/pm_subsystem/reboot.html 1. 前言 在使用计算机的过程中,关机和重启是最先学会的两个操作.同样,这两个操作在Lin ...
- 算法(Algorithms)第4版 练习 1.3.37
package com.qiusongde.creative; import com.qiusongde.Queue; import edu.princeton.cs.algs4.StdOut; pu ...
- 大话设计模式--中介者模式 Mediator --C++实现实例
1. 中介者模式: 用一个中介对象来封装一系列的对象交互,中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立改变他们之间的交互. Mediator的出现减少了各个Colleague的耦 ...
- Codeforces 219D Choosing Capital for Treeland:Tree dp
题目链接:http://codeforces.com/problemset/problem/219/D 题意: 给你一棵树,n个节点. 树上的边都是有向边,并且不一定是从父亲指向儿子的. 你可以任意翻 ...