python与机器学实践-何宇健 源代码及过程中遇到的问题
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
import numpy as np
import matplotlib.pyplot as plt
#第一步 获取与处理数据
x,y=[],[] #定义存储输入数据和目标数据的数组
for sample in open('a.txt','r'): #遍历数据集并保存
_x,_y=sample.split(",")
x.append(float(_x))
y.append(float(_y))
x,y=np.array(x),np.array(y) #转化为numpy数组
x=(x-x.mean())/x.std() #标准化
#将原始数据以散点图的形式画出
plt.figure()
plt.scatter(x,y,c="g",s=6)
plt.show
#第二步:选择与训练模型
#模型:多项式拟合 多项式拟合散点是线性回归很小的一部分
x0=np.linspace(-2,4,100) #在(-2,4)这个区间上取100个点作为画图的基础
#核心代码 仔细研究 建立回归模型
def get_model(deg):#得到模型,这一步尤其重要,要仔细分析
return lambda input_x=x0: np.polyval(np.polyfit(x,y,deg),input_x)
def get_cost(deg,input_x,input_y):#返回损失值
return 0.5*((get_model(deg)(input_x)-input_y)**2).sum()
test_set={1,4,10}
for d in test_set:
print(get_cost(d,x,y))
#第三步:评估与可视化结果
plt.scatter(x,y,c="g",s=20)#s是点的大小即size
for d in test_set:
plt.plot(x0,get_model(d)(),label="degree={}".format(d))
plt.xlim(-2,4)
plt.ylim(1e5,8e5)
plt.legend()
plt.show
过程中遇到的问题:
1.在获取与处理数据的过程中,文件老是找不到,在这里有两种常见的错误
(1)FileNotFoundError: [Errno 2] No such file or directory: 'C:/a.txt'
错误分析与解决:可能是文件路径写错了,也可能是文件名写错了,检查自己设置的文件名后缀,我的错误就是没注意文件名后缀,结果我的文件名实际上是a.txt.txt,所以说一直提示我找不到文件,后来在保存文件的地方重新设置显示文件扩展名,顺利解决问题,可以将数据文件和py源文件放在一个文件夹下,就可以只输入文件名,而不输入文件路径
(2)SyntaxError: (unicode error) 'unicodeescape' codec can't decode bytes in position 2-3: truncated \UXXXXXXXX escape
错误分析与解决:
从他的博客取经的
@淘气小子
原因:
window 读取文件可以用\,但是在字符串中\是被当作转义字符来使用,所以’d:\a.txt’会被转义成’d:\a.txt’这是正确路径,所以不会报错。而‘C:\Users\FrankYuan\Pictures\Camera Roll\WIN_20161010_08_51_57_Pro.jpg ’中经过转义之后可能就找不到路径的资源了,例如\t可能就转义成tab键了。
解决办法
python在描述路径时可以有多种方式,现列举常见的三种
方式一:转义的方式
'd:\\a.txt'
方式二:显式声明字符串不用转义
'd:r\a.txt'
方式三:使用Linux的路径/ 最推荐
'd:/a.txt'
我强烈推荐第三种写法,这在Linux和window下都是行的通的。
2.标签的正确拼写 label 这个错误犯过很多次了,每次拼写成lable,导致报错,去网上搜还出来一堆看起来特别合理的解释,说什么IDE问题,哎,实际上就是粗心大意拼写错误
3.#核心代码 仔细研究 建立回归模型,多看多思考
def get_model(deg):#得到模型,这一步尤其重要,要仔细分析
return lambda input_x=x0: np.polyval(np.polyfit(x,y,deg),input_x)
def get_cost(deg,input_x,input_y):#返回损失值
return 0.5*((get_model(deg)(input_x)-input_y)**2).sum()
python与机器学实践-何宇健 源代码及过程中遇到的问题的更多相关文章
- 【机器学*】k*邻算法-03
心得体会: 需要思考如何将现实对象转化为特征向量,设置特征向量时记住鸭子定律1 鸭子定律1 如果走路像鸭子.说话像鸭子.长得像鸭子.啄食也像鸭子,那它肯定就是一只鸭子 事物的外在特征就是事物本质的表现 ...
- 【机器学*】k*邻算法-02
k邻*算法具体应用:2-2约会网站配对 心得体会: 1.对所有特征值进行归一化处理:将特征值单位带来的距离影响消除,使所有特征同权重--然后对不同的特征进行加权2.对于相互独立的特征,可以通过建立(特 ...
- Python & 机器学习之项目实践
机器学习是一项经验技能,经验越多越好.在项目建立的过程中,实践是掌握机器学习的最佳手段.在实践过程中,通过实际操作加深对分类和回归问题的每一个步骤的理解,达到学习机器学习的目的. 预测模型项目模板不能 ...
- paip.python连接mysql最佳实践o4
paip.python连接mysql最佳实践o4 python连接mysql 还使用了不少时间...,相比php困难多了..麻烦的.. 而php,就容易的多兰.. python标准库没mysql库,只 ...
- paip.python ide 总结最佳实践o4.
paip.python ide 总结最佳实践o4. ====2个重要的标准 1.可以自动补全 2.可以断点调试 =======选型使用报告 Komodo正好儿俄机器上有,使用累挂,自动补全还凑火.就是 ...
- Python数据分析入门与实践 ✌✌
Python数据分析入门与实践 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 这是一个数据驱动的时代,想要从事机器学习.人工智能.数据挖掘等前沿技术,都离不开 ...
- Python数据分析入门与实践
Python数据分析入门与实践 整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的时候可以关 ...
- 【机器学*】k-*邻算法(kNN) 学*笔记
[机器学*]k-*邻算法(kNN) 学*笔记 标签(空格分隔): 机器学* kNN简介 kNN算法是做分类问题的.思想如下: KNN算法的思想总结一下:就是在训练集中数据和标签已知的情况下,输入测试数 ...
- Python 从入门到实践 试一试 参考代码
这两天学习Python 看了python从入门到实践的书籍,里面有课后题“试一试” 然后就跟着写了,代码在以下地址,如果需要自取 https://files.cnblogs.com/files/fud ...
随机推荐
- C#之文件缓存
写在开头 今天就放假了,照理说应该写今年的总结了,但是回头一看,很久没有写过技术类的文字了,还是先不吐槽了. 关于文件缓存 写了很多的代码,常常在写EXE(定时任务)或者写小站点(数据的使用和客户端调 ...
- 第一周 动态规划Dynamic Programming(一)
一.概念 动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法.动态规划是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决. 1.试用情况: 2.解决步骤 ...
- C++数据结构学习之顺序表
顺序表是数据结构中最基本也是应用相当广泛的一种数据结构类型.它通常包含三个私有成分,即指向数据数组的头指针.当前表长以及表的实际容量.表的头指针通常指向数据数组的基地址,通过数组的形式进行访问数据数组 ...
- vscode php跳转
最近在写一个php项目,最后选定使用vscode编辑器,然后研究了一下断点调试.格式代码.点击跳转 以下是配置步骤,记录一下 1.代码格式化及跳转 1.前提条件:安装7.0以上版本php, ...
- 获取网站证书的两种方法(wireshark or firefox nightly)
一.使用Wireshark 截取数据包的方式 1. wireshark软件需要使用管理员权限运行,开始捕获后,按下ctrl + f,查找证书所在分组,从source 和destination 栏可以看 ...
- 使用Dism备份和全新恢复系统
1.使用WinPE启动,winPE制作可以参考我的另一文章http://www.cnblogs.com/karl-F/p/6934086.html 2.捕获C盘镜像 (1)查看磁盘 在PE提示符:输入 ...
- 如何在Python中从零开始实现随机森林
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 决策树可能会受到高度变异的影响,使得结果对所使用的特定测试数据而言变得脆弱. 根据您的测试数据样本构建多个模型(称为套袋)可以减少这种差异,但是 ...
- linux集群架构
Linux集群架构 根据功能划分为两大类:高可用和负载均衡 高可用集群通常为两台服务器,一台工作,另外一台作为冗余,当提供服务的机器宕机,冗余将接替继续提供服务 实现高可用的开源软件有:heart ...
- 免费 Https 证书(Let's Encrypt)申请与配置
之前要申请免费的 https 证书操作步骤相当麻烦,今天看到有人在讨论,就搜索了一下.发现现在申请步骤简单多了. 1. 下载 certbot git clone https://github.com/ ...
- /dev/null 2>&1 详解
今天一个朋友突然在自己的维护的Linux中, /var/spool/cron/root 中看到了以下的内容: 30 19 * * * /usr/bin/**dcon.sh > /dev/nul ...