Mahout推荐之ItemBased

一、   算法原理

(一)    基本原理

如下图评分矩阵所示:行为user,列为item.

图(1)

该算法的原理:

1.  计算Item之间的相似度。

2.  对用户U做推荐

公式(一)

Map tmp ;

Map tmp1 ;

for(item a  in userRatedItems){

rate  =userforItemRate(a)

ListsimItem =getSimItem(a);

For(Jin simItem){

Item b =j;

Simab=sim(a,b);

Tmp.add(b,Tmp .get(b)+simab*rate)

tmp1.add(b, tmp1.get(b)+simab)

}

}

Maptmp2=temp/temp1

Sortbyval(tmp2)

return topK(tmp2,k)

(二)    相似度计算

1.  Cos相似度

公式(二)

2.  皮尔逊相似度

公式(三)

3.  调整的cos相似度

公式(四)

(三)    采样

计算全量的itemPair之间的相似度耗费大量的时间,也是没有必要的,所以需要采样,减小计算量。

二、   单机模式实现

(一)    候选Item搜索

计算所有Item Pair之间的相似度在单机模式下是不现实的,需要在海量的候选集中搜索出一部分最有可能的候选集用于计算。Mahout提供了4中候选Item选择策略。

1.  AllSimilarItemsCandidateItemsStrategy

@Override

FastIDSet doGetCandidateItems(long[] preferredItemIDs, DataModel dataModel) throws TasteException {

FastIDSet candidateItemIDs = new FastIDSet();

for (long itemID : preferredItemIDs) {

candidateItemIDs.addAll(similarity.allSimilarItemIDs(itemID));

}

candidateItemIDs.removeAll(preferredItemIDs);

return candidateItemIDs;

}

2.  AllUnknownItemsCandidateItemsStrategy

@Override

protected FastIDSet doGetCandidateItems(long[] preferredItemIDs, DataModel dataModel) throws TasteException {

FastIDSet possibleItemIDs = new FastIDSet(dataModel.getNumItems());

LongPrimitiveIterator allItemIDs = dataModel.getItemIDs();

while (allItemIDs.hasNext()) {

possibleItemIDs.add(allItemIDs.nextLong());

}

possibleItemIDs.removeAll(preferredItemIDs);

return possibleItemIDs;

}

3.  PreferredItemsNeighborhoodCandidateItemsStrategy

@Override

protected FastIDSet doGetCandidateItems(long[] preferredItemIDs, DataModel dataModel) throws TasteException {

FastIDSet possibleItemsIDs = new FastIDSet();

for (long itemID : preferredItemIDs) {

PreferenceArray itemPreferences = dataModel.getPreferencesForItem(itemID);

int numUsersPreferringItem = itemPreferences.length();

for (int index = 0; index < numUsersPreferringItem; index++) {

possibleItemsIDs.addAll(dataModel.getItemIDsFromUser(itemPreferences.getUserID(index)));

}

}

possibleItemsIDs.removeAll(preferredItemIDs);

return possibleItemsIDs;

}

4.  SamplingCandidateItemsStrategy

private static int computeMaxFrom(int factor, int numThings) {

if (factor == NO_LIMIT_FACTOR) {

return MAX_LIMIT;

}

long max = (long) (factor * (1.0 + Math.log(numThings) / LOG2));

return max > MAX_LIMIT ? MAX_LIMIT : (int) max;

}

@Override

protected FastIDSet doGetCandidateItems(long[] preferredItemIDs, DataModel dataModel) throws TasteException {

LongPrimitiveIterator preferredItemIDsIterator = new LongPrimitiveArrayIterator(preferredItemIDs);

if (preferredItemIDs.length > maxItems) {

double samplingRate = (double) maxItems / preferredItemIDs.length;

//      log.info("preferredItemIDs.length {}, samplingRate {}", preferredItemIDs.length, samplingRate);

preferredItemIDsIterator =

new SamplingLongPrimitiveIterator(preferredItemIDsIterator, samplingRate);

}

FastIDSet possibleItemsIDs = new FastIDSet();

while (preferredItemIDsIterator.hasNext()) {

long itemID = preferredItemIDsIterator.nextLong();

PreferenceArray prefs = dataModel.getPreferencesForItem(itemID);

int prefsLength = prefs.length();

if (prefsLength > maxUsersPerItem) {

Iterator<Preference> sampledPrefs =

new FixedSizeSamplingIterator<Preference>(maxUsersPerItem, prefs.iterator());

while (sampledPrefs.hasNext()) {

addSomeOf(possibleItemsIDs, dataModel.getItemIDsFromUser(sampledPrefs.next().getUserID()));

}

} else {

for (int i = 0; i < prefsLength; i++) {

addSomeOf(possibleItemsIDs, dataModel.getItemIDsFromUser(prefs.getUserID(i)));

}

}

}

possibleItemsIDs.removeAll(preferredItemIDs);

return possibleItemsIDs;

}

private void addSomeOf(FastIDSet possibleItemIDs, FastIDSet itemIDs) {

if (itemIDs.size() > maxItemsPerUser) {

LongPrimitiveIterator it =

new SamplingLongPrimitiveIterator(itemIDs.iterator(), (double) maxItemsPerUser / itemIDs.size());

while (it.hasNext()) {

possibleItemIDs.add(it.nextLong());

}

} else {

possibleItemIDs.addAll(itemIDs);

}

}

(二)    估值

protected float doEstimatePreference(long userID, PreferenceArray preferencesFromUser, long itemID)

throws TasteException {

double preference = 0.0;

double totalSimilarity = 0.0;

int count = 0;

double[] similarities = similarity.itemSimilarities(itemID, preferencesFromUser.getIDs());

for (int i = 0; i < similarities.length; i++) {

double theSimilarity = similarities[i];

if (!Double.isNaN(theSimilarity)) {

// Weights can be negative!

preference += theSimilarity * preferencesFromUser.getValue(i);

totalSimilarity += theSimilarity;

count++;

}

}

// Throw out the estimate if it was based on no data points, of course, but also if based on

// just one. This is a bit of a band-aid on the 'stock' item-based algorithm for the moment.

// The reason is that in this case the estimate is, simply, the user's rating for one item

// that happened to have a defined similarity. The similarity score doesn't matter, and that

// seems like a bad situation.

if (count <= 1) {

return Float.NaN;

}

float estimate = (float) (preference / totalSimilarity);

if (capper != null) {

estimate = capper.capEstimate(estimate);

}

return estimate;

}

(三)    推荐

1.  根据历史评分列表推荐

这种推荐方式根据用户之前产生过评分的item做推荐,推荐结果按照估计值的大小排序。

@Override

public List<RecommendedItem> recommend(long userID,
int howMany, IDRescorer rescorer) throws TasteException {

Preconditions.checkArgument(howMany >= 1, "howMany must be at least 1");

log.debug("Recommending items for user ID '{}'", userID);

PreferenceArray preferencesFromUser = getDataModel().getPreferencesFromUser(userID);

if (preferencesFromUser.length() == 0) {

return Collections.emptyList();

}

FastIDSet possibleItemIDs = getAllOtherItems(userID, preferencesFromUser);

TopItems.Estimator<Long> estimator = new Estimator(userID, preferencesFromUser);

List<RecommendedItem> topItems = TopItems.getTopItems(howMany, possibleItemIDs.iterator(), rescorer,

estimator);

log.debug("Recommendations are: {}", topItems);

return topItems;

}

2.  Because推荐

这种推荐方式用于实时推荐。

@Override

public List<RecommendedItem> recommendedBecause(long userID, long itemID, int howMany) throws TasteException {

Preconditions.checkArgument(howMany >= 1, "howMany must be at least 1");

DataModel model = getDataModel();

TopItems.Estimator<Long> estimator = new RecommendedBecauseEstimator(userID, itemID);

PreferenceArray prefs = model.getPreferencesFromUser(userID);

int size = prefs.length();

FastIDSet allUserItems = new FastIDSet(size);

for (int i = 0; i < size; i++) {

allUserItems.add(prefs.getItemID(i));

}

allUserItems.remove(itemID);

return TopItems.getTopItems(howMany, allUserItems.iterator(), null, estimator);

}

//估值方法

@Override

public double estimate(Long itemID) throws TasteException {

Float pref = getDataModel().getPreferenceValue(userID, itemID);

if (pref == null) {

return Float.NaN;

}

double similarityValue = similarity.itemSimilarity(recommendedItemID, itemID);

return (1.0 + similarityValue) * pref;

}

三、   MapReduce模式实现

(一)    将偏好文件转换成评分矩阵(PreparePreferenceMatrixJob)

(二)    计算共现矩阵相似度(RowSimilarityJob)

(三)    挑选最相似的K个Item

(四)    用户偏好向量和相似降维后的共现矩阵做乘法

(五)    过滤制定的user\titem

(六)    生成最终的推荐结果

四、   实例演示

1.  单机模式

1)  批量推荐

DataModel  dataModel =
new FileDataModel(new File("p/pereference"));

ItemSimilarity  similarity  = new PearsonCorrelationSimilarity(dataModel);

ItemBasedRecommender  recommender = new GenericItemBasedRecommender(dataModel,similarity );

System.out.println(recommender.recommend(10, 10));

2)  Because推荐

DataModel  dataModel = new FileDataModel(new File("p/pereference"));

ItemSimilarity  similarity  = new PearsonCorrelationSimilarity(dataModel);

ItemBasedRecommender  recommender = new GenericItemBasedRecommender(dataModel,similarity );

System.out.println(recommender.recommendedBecause(10, 10328, 100));

2.  MapReduce模式

API

org.apache.mahout.cf.taste.hadoop.item.RecommenderJob.main(args)

--input

偏好数据路径,文本文件。格式 userid\t itemid\t preference

--output

推荐结果路径

-- numRecommendations

推荐个数

--usersFile

需要做出推荐的user,默认全部做推荐

--itemsFile

需要做出推荐的item,默认全部做推荐

--filterFile

文件格式文本,userid\itemid 。目的是给userid的用户不要推荐itemid的item

--booleanData

是否是布尔数据

--maxPrefsPerUser

最大偏好值

--minPrefsPerUser

最小偏好值

--maxSimilaritiesPerItem

给每一个Item计算最多的相似item数目

--maxPrefsPerUserInItemSimilarity

ItemSimilarity估计item相似度时,对每一个user最多偏好数目

--similarityClassname

SIMILARITY_PEARSON_CORRELATION、SIMILARITY_COOCCURRENCE、SIMILARITY_LOGLIKELIHOOD、SIMILARITY_TANIMOTO_COEFFICIENT、SIMILARITY_CITY_BLOCK、SIMILARITY_COSINE、SIMILARITY_EUCLIDEAN_DISTANCE

--threshold

删除低于该阈值的item对

--outputPathForSimilarityMatrix

指定生成的item相似矩阵路径,文本文件,格式为 itemA \t itemB \t 相似值

实例

String  [] args ={"--input","p",

"--output","recommender",

"--numRecommendations","10",

"--outputPathForSimilarityMatrix","simMatrix",

"--similarityClassname","SIMILARITY_PEARSON_CORRELATION"}

org.apache.mahout.cf.taste.hadoop.item.RecommenderJob.main(args);

五、   参考文献

1.  M.Deshpandeand G. Karypis. Item-based top-n recommendation algorithms.

2.  B.M.Sarwar, G. Karypis, J.A. Konstan, and J. Reidl. Item-based collaborativefiltering recommendation algorithms.

3.  Item-based collaborative filtering

4.  Accuratelycomputing running variance

Mahout推荐算法之ItemBased的更多相关文章

  1. Mahout推荐算法API详解

    转载自:http://blog.fens.me/mahout-recommendation-api/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, ...

  2. Mahout推荐算法基础

    转载自(http://www.geek521.com/?p=1423) Mahout推荐算法分为以下几大类 GenericUserBasedRecommender 算法: 1.基于用户的相似度 2.相 ...

  3. 转】Mahout推荐算法API详解

    原博文出自于: http://blog.fens.me/mahout-recommendation-api/ 感谢! Posted: Oct 21, 2013 Tags: itemCFknnMahou ...

  4. Mahout推荐算法之SlopOne

    Mahout推荐算法之SlopOne 一.       算法原理 有别于基于用户的协同过滤和基于item的协同过滤,SlopeOne采用简单的线性模型估计用户对item的评分.如下图,估计UserB对 ...

  5. [转]Mahout推荐算法API详解

    Mahout推荐算法API详解 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeepe ...

  6. Mahout推荐算法API具体解释【一起学Mahout】

    阅读导读: 1.mahout单机内存算法实现和分布式算法实现分别存在哪些问题? 2.算法评判标准有哪些? 3.什么会影响算法的评分? 1. Mahout推荐算法介绍 Mahout推荐算法,从数据处理能 ...

  7. 基于物品的协同过滤推荐算法——读“Item-Based Collaborative Filtering Recommendation Algorithms” .

    ligh@local-host$ ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.0.3 基于物品的协同过滤推荐算法--读"Item-Based ...

  8. Mahout推荐算法ItemBased

    Mahout推荐的ItemBased 一.   算法原理 (一)    基本的 下面的例子,参见图评分矩阵:表现user,归类为item. 图(1) 该算法的原理: 1.  计算Item之间的相似度. ...

  9. 从源代码剖析Mahout推荐引擎

    转载自:http://blog.fens.me/mahout-recommend-engine/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pi ...

随机推荐

  1. 反射获取 Class

    原文链接:https://www.codemore.top/cates/Backend/post/2018-04-26/reflect-class 类 Java中每个类型要么是引用类型,要么是原生类型 ...

  2. Deap Learning (吴恩达) 第一章深度学习概论 学习笔记

    Deap Learning(Ng) 学习笔记 author: 相忠良(Zhong-Liang Xiang) start from: Sep. 8st, 2017 1 深度学习概论 打字太麻烦了,索性在 ...

  3. ABP文档笔记 - 通知

    基础概念 两种通知发送方式 直接发送给目标用户 用户订阅某类通知,发送这类通知时直接分发给它们. 两种通知类型 一般通知:任意的通知类型 "如果一个用户发送一个好友请求,那么通知我" ...

  4. swing JTable 更新数据

    rowData 是将要更新的表格内数据,coloumnName是将要更新的表头数据. table是原本的table对象,更新数据的时候要用 DefaultTableModel 类~ /*更新table ...

  5. webpack4.1.1的使用详细教程

    安装全局webpack cnpm install -g webpack 安装全局webpack-cli npm install -g webpack-cli 初始化:生成package.json文件 ...

  6. Node.js JXcore 打包

    Node.js 是一个开放源代码.跨平台的.用于服务器端和网络应用的运行环境. JXcore 是一个支持多线程的 Node.js 发行版本,基本不需要对你现有的代码做任何改动就可以直接线程安全地以多线 ...

  7. CentOS 7安装Python3.5,并与Python2.7兼容并存

    CentOS7默认安装了python2.7.5,当需要使用python3的时候,可以手动下载Python源码后编译安装.1.安装python3.5可能使用的依赖1 yum install openss ...

  8. PHP Libxml 函数

    PHP Libxml 简介 Libxml 函数和常量与 SimpleXML.XSLT 以及 DOM 函数一起使用. 安装 这些函数需要 Libxml 程序包. 在 xmlsoft.org 下载 PHP ...

  9. 粗浅看Struts2和Hibernate框架

    ----------------------------------------------------------------------------------------------[版权申明: ...

  10. webpack dev server 和 sublime text 配合时需要注意的地方

    参考:https://webpack.js.org/guides/development/ Adjusting Your Text Editor Some text editors have a &q ...