题目链接:

https://vjudge.net/problem/POJ-3641

题目大意:

问p是不是伪素数。伪素数条件:①p不是素数。② ap = a (mod p)。

思路:

直接快速幂模板+素数判断

 #include<iostream>
#include<vector>
#include<queue>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<set>
#include<cmath>
using namespace std;
typedef pair<int, int> Pair;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int maxn = +;
int T, n, m;
ll pow(ll a, ll b, ll m)
{
ll ans = ;
while(b)
{
if(b & )ans = (ans % m) * (a % m) % m;
b /= ;
a = (a % m) * (a % m) % m;
}
ans %= m;
return ans;
}
bool noprime(int x)
{
for(int i = ; i <= (int)sqrt(x + 0.5); i++)
{
if(x % i == )return true;
}
return false;
}
int main()
{
int p, a;
while(cin >> p >> a && (p + a))
{
if(noprime(p) && pow(a, p, p) == a)cout<<"yes"<<endl;
else cout<<"no"<<endl;
}
}

POJ-3641 Pseudoprime numbers---快速幂的更多相关文章

  1. poj 3641 Pseudoprime numbers 快速幂+素数判定 模板题

    Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7954 Accepted: 3305 D ...

  2. poj 3641 Pseudoprime numbers

    题目连接 http://poj.org/problem?id=3641 Pseudoprime numbers Description Fermat's theorem states that for ...

  3. POJ 3641 Pseudoprime numbers (数论+快速幂)

    题目链接:POJ 3641 Description Fermat's theorem states that for any prime number p and for any integer a ...

  4. POJ3641 Pseudoprime numbers(快速幂+素数判断)

    POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...

  5. poj 3641 Pseudoprime numbers(快速幂)

    Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...

  6. poj 3641 Pseudoprime numbers Miller_Rabin测素裸题

    题目链接 题意:题目定义了Carmichael Numbers 即 a^p % p = a.并且p不是素数.之后输入p,a问p是否为Carmichael Numbers? 坑点:先是各种RE,因为po ...

  7. POJ 3641 Pseudoprime numbers (miller-rabin 素数判定)

    模板题,直接用 /********************* Template ************************/ #include <set> #include < ...

  8. HDU 3641 Pseudoprime numbers(快速幂)

    Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11336   Accepted: 4 ...

  9. POJ 1995:Raising Modulo Numbers 快速幂

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5532   Accepted: ...

  10. pojPseudoprime numbers (快速幂)

    Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...

随机推荐

  1. Javscript的垃圾回收

    和C#.Java一样JavaScript有自动垃圾回收机制,也就是说执行环境会负责管理代码执行过程中使用的内存,在开发过程中就无需考虑内存分配及无用内存的回收问题了.JavaScript垃圾回收的机制 ...

  2. Angular组件——中间人模式

    设计一个组件时,组件应该是内聚的,应该不依赖外部已经存在的组件,要实现这种松耦合的组件要使用中间人模式. 一.中间人模式 该组件树中除了组件1以外,每个组件都有一个父组件可以扮演中间人的角色.顶级的中 ...

  3. Python 中列表生成式和生成器

    列表生成式 即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式. 举个例子,要生成list [1,2,3,4,5,6,7,8,9,10]可以用l ...

  4. [poj-2985]The k-th Largest Group_Treap+并查集

    The k-th Largest Group poj-2985 题目大意:给你n只猫,有两种操作:1.将两只猫所在的小组合并.2.查询小组数第k大的小组的猫数. 注释:1<=n,m<=20 ...

  5. selenium2自动化测试学习笔记(五)-参数化编程,自动登陆网易QQ邮箱

    学习python下使用selenium2自动测试第6天,参数化编程这节课花了两天时间. 本次编程主要时间是花在熟悉python上 知识点or坑点: 1.读取txt.xml.csv等文件存储的账号.密码 ...

  6. Java读取word中表格

    因为要新建一个站,公司要把word表格的部分行列存到数据库中.之前用java操作过excel,本来打算用java从word表格中读取数据,再存到数据库中,结果因为权限不够,无法访问公司要写的那个数据库 ...

  7. Win7(64Bit旗舰版) 安装 PL/SQL Developer图解说明

    Win7逐渐成为现行主流的windows操作系统,其32和64位系统平分秋色.然而当下还没有64位的PL/SQL Developer问世,直接用32位的PL/SQL Developer连接Win7(6 ...

  8. 2017-2018-1 我爱学Java 第六七周 作业

    团队六七周作业 完善版需求规格说明书 制定团队编码规范 数据库设计 后端架构设计 TODOList 参考资料 完善版需求规格说明书 <需求规格说明书>初稿不足之处: 1.开发工具写错 2. ...

  9. Papers3

    Papers3 总览 Papers功能主要是文献收集,整理,阅读和引用. 主页面: 文献收集 Papers提供两种导入文献的方法:在线搜索和本地导入: 在线搜索 可以通过搜索题目,作者,摘要等内容中的 ...

  10. 2017 国庆湖南 Day5

    期望得分:76+80+30=186 实际得分:72+10+0=82 先看第一问: 本题不是求方案数,所以我们不关心 选的数是什么以及的选的顺序 只关心选了某个数后,对当前gcd的影响 预处理 cnt[ ...