Coursera-AndrewNg(吴恩达)机器学习笔记——第三周编程作业
一. 逻辑回归
1.背景:使用逻辑回归预测学生是否会被大学录取。
2.首先对数据进行可视化,代码如下:
pos = find(y==); %找到通过学生的序号向量
neg = find(y==); %找到未通过学生的序号向量
plot(X(pos,),X(pos,),'k+','LineWidth',,'MarkerSize',); %使用+绘制通过学生
hold on;
plot(X(neg,),X(neg,),'ko','MarkerFaceColor','y','MarkerSize',); %使用o绘制未通过学生
% Put some labels
hold on;
% Labels and Legend
xlabel('Exam 1 score')
ylabel('Exam 2 score')
% Specified in plot order
legend('Admitted', 'Not admitted')
hold off;
3.sigmoid函数的实现,代码如下:
function g = sigmoid(z) %函数文件名为sigmoid.m
%SIGMOID Compute sigmoid function
% g = SIGMOID(z) computes the sigmoid of z.
% You need to return the following variables correctly
g = zeros(size(z));
temp=-z;
temp=e.^temp;
temp=temp+;
temp=./temp;
g=temp;
end
4.代价函数的实现
代码如下:
function [J, grad] = costFunction(theta, X, y) %函数名文件名为costFunction.m
m = length(y); % number of training examples % You need to return the following variables correctly
J = /m*(-(y')*log(sigmoid(X*theta))-(1-y)'*log(-sigmoid(X*theta))); %计算代价函数
grad = zeros(size(theta));
grad = /m*X'*(sigmoid(X*theta)-y); %求梯度
end
5.代替梯度下降的优化方法fminunc(),代码如下:
% 参数GradObj设置为on表示,通知函数fminunc()我们的代价函数costFunction()可以返回代价值和梯度值,函数fminunc()可以直接使用梯度值进行计算
options = optimset('GradObj', 'on', 'MaxIter', );
% Run fminunc to obtain the optimal theta
% This function will return theta and the cost
[theta, cost] = ...
fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
6.使用计算出的θi值做预测,预测函数如下:
function p = predict(theta, X) m = size(X, ); % Number of training examples
p = zeros(m, );
p=floor(sigmoid(X*theta).*); %因为使用了floor()函数,所以函数值要扩大二倍
二. 正规化逻辑回归
1.特征映射(Feature Mapping):使用两个特征(x1,x2)组合出更多的特征如x1x2,x12,x22等。代码如下:
function out = mapFeature(X1, X2) degree = ;
out = ones(size(X1(:,)));
for i = :degree
for j = :i
out(:, end+) = (X1.^(i-j)).*(X2.^j); %一共生成27项
end
end
end
2.计算在逻辑回归中经过正规化的代价函数和梯度:
function [J, grad] = costFunctionReg(theta, X, y, lambda) m = length(y); % number of training examples
J = /m*(-(y')*log(sigmoid(X*theta))-(1-y)'*log(-sigmoid(X*theta)))+(/(*m))*lambda*(sum(theta .^) - theta()^); %正规化时不用对θ1正规化
grad = zeros(size(theta) grad = /m*X'*(sigmoid(X*theta)-y)+lambda*theta/m;
grad() = grad()-lambda*theta()/m; end
Coursera-AndrewNg(吴恩达)机器学习笔记——第三周编程作业的更多相关文章
- Coursera-AndrewNg(吴恩达)机器学习笔记——第三周编程作业(逻辑回归)
一. 逻辑回归 1.背景:使用逻辑回归预测学生是否会被大学录取. 2.首先对数据进行可视化,代码如下: pos = find(y==); %找到通过学生的序号向量 neg = find(y==); % ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第三周
一.逻辑回归问题(分类问题) 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件:判断肿瘤是恶性还是良性等.机器学习中逻辑回归便是解决分类问题的一种方法.二分类:通常表示为yϵ{0,1},0:&quo ...
- 吴恩达机器学习笔记(三) —— Regularization正则化
主要内容: 一.欠拟合和过拟合(over-fitting) 二.解决过拟合的两种方法 三.正则化线性回归 四.正则化logistic回归 五.正则化的原理 一.欠拟合和过拟合(over-fitting ...
- 吴恩达机器学习笔记(六) —— 支持向量机SVM
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...
- Machine Learning|Andrew Ng|Coursera 吴恩达机器学习笔记
Week1: Machine Learning: A computer program is said to learn from experience E with respect to some ...
- Machine Learning|Andrew Ng|Coursera 吴恩达机器学习笔记(完结)
Week 1: Machine Learning: A computer program is said to learn from experience E with respect to some ...
- [吴恩达机器学习笔记]12支持向量机5SVM参数细节
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landma ...
- [吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematic ...
- [吴恩达机器学习笔记]12支持向量机2 SVM的正则化参数和决策间距
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin I ...
随机推荐
- 查看Linux下的文件
到了这个时候了,也大概的知道了寄出的Linux的操作,是时候接触一下如何查看文件了.我们常用的有以下几种方式: 1.cat,使用cat命令可以将文件的内容输出到显示屏上,也可以将两个文件结合一起输出. ...
- Cracking the Coding Interview:: 寻找有环链表的环路起始节点
给定一个有环链表,实现一个算法返回环路的开头节点. 这个问题是由经典面试题-检测链表是否存在环路演变而来.这个问题也是编程之美的判断两个链表是否相交的扩展问题. 首先回顾一下编程之美的问题. 由于如果 ...
- android binder理解
Android中的Parcel是什么 Parcel,翻译过来是"打包"的意思.打包干什么呢?是为了序列化. 如果要在进程之间传递一个整数,很简单,直接传就是行了:如果要传 ...
- Java Swing 之Timer配合JProgressBar的使用
Timer作为java开发中常用的一个定时工具,配合JProgressBar使用起来还真是方便,只需要调用timer.start()方法就能激活并运行,然后调用stop()方法便能停止,还可以再次通过 ...
- XBMC源代码分析 7:视频播放器(dvdplayer)-输入流(以libRTMP为例)
前文分析了XBMC的基本结构: XBMC源代码分析 1:整体结构以及编译方法 XBMC源代码分析 2:Addons(皮肤Skin) XBMC源代码分析 3:核心部分(core)-综述 XBMC源代码分 ...
- C++ Primer 有感(复制控制)
1.不管类是否定义了自己的析构函数,编译器都 自动执行类中非static数据成员的析构函数. 2.如果我们没有定义复制构造函数,编译器就会为我们合成一个.合成复制构造函数的行为是,执行逐个成员初始化, ...
- my golib:db query Result
go提供了一套统一操作database的sql接口,任何第三方都可以通过实现相应的driver来访问感兴趣的数据库.譬如我们项目中使用的Go-MySQL-Driver. go提供了一套很好的机制来处理 ...
- 【Android 应用开发】Ubuntu 下 Android Studio 开发工具使用详解 (旧版本 | 仅作参考)
. 基本上可以导入项目开始使用了 ... . 作者 : 万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/21035637 ...
- Java集合之Hashtable
和HashMap一样,Hashtable也是一个散列表,存储的内容也是键值对key-value映射.它继承了Dictionary,并实现了Map.Cloneable.io.Serializable接口 ...
- Linux下xargs命令详解
http://www.cnblogs.com/perfy/archive/2012/07/24/2606101.html xargs是给命令传递参数的一个过滤器,也是组合多个命令的一个工具.它把一个数 ...