SoftMax regression
最终收敛到这个结果,巨爽。
smaple 0: 0.983690,0.004888,0.011422,likelyhood:-0.016445
smaple 1: 0.940236,0.047957,0.011807,likelyhood:-0.061625
smaple 2: 0.818187,0.001651,0.180162,likelyhood:-0.200665
smaple 3: 0.000187,0.999813,0.000000,likelyhood:-0.000187
smaple 4: 0.007913,0.992087,0.000000,likelyhood:-0.007945
smaple 5: 0.001585,0.998415,0.000000,likelyhood:-0.001587
smaple 6: 0.020159,0.000001,0.979840,likelyhood:-0.020366
smaple 7: 0.018230,0.000000,0.981770,likelyhood:-0.018398
smaple 8: 0.025072,0.000000,0.974928,likelyhood:-0.025392
- #include "stdio.h"
- #include "math.h"
- double matrix[9][4]={{1,47,76,24}, //include x0=1
- {1,46,77,23},
- {1,48,74,22},
- {1,34,76,21},
- {1,35,75,24},
- {1,34,77,25},
- {1,55,76,21},
- {1,56,74,22},
- {1,55,72,22},
- };
- double result[]={1,
- 1,
- 1,
- 2,
- 2,
- 2,
- 3,
- 3,
- 3,};
- double theta[2][4]={
- {0.3,0.3,0.01,0.01},
- {0.5,0.5,0.01,0.01}}; // include theta0
- double function_g(double x)
- {
- double ex = pow(2.718281828,x);
- return ex/(1+ex);
- }
- double function_e(double x)
- {
- return pow(2.718281828,x);
- }
- int main(void)
- {
- double likelyhood = 0.0;
- for(int j = 0;j<9;++j)
- {
- double sum = 1.0; // this is very important, because exp(thetak x)=1
- for(int l = 0;l<2;++l)
- {
- double xi = 0.0;
- for(int k=0;k<4;++k)
- {
- xi += matrix[j][k]*theta[l][k];
- }
- sum += function_e(xi);
- }
- double xi = 0.0;
- for(int k=0;k<4;++k)
- {
- xi += matrix[j][k]*theta[0][k];
- }
- double p1 = function_e(xi)/sum;
- xi = 0.0;
- for(int k=0;k<4;++k)
- {
- xi += matrix[j][k]*theta[1][k];
- }
- double p2 = function_e(xi)/sum;
- double p3 = 1-p1-p2;
- double ltheta = 0.0;
- if(result[j]==1)
- ltheta = log(p1);
- else if(result[j]==2)
- ltheta = log(p2);
- else if(result[j]==3)
- ltheta = log(p3);
- else
- {}
- printf("smaple %d: %f,%f,%f,likelyhood:%f\n",j,p1,p2,p3,ltheta);
- }
- for(int i =0 ;i<1000;++i)
- {
- for(int j=0;j<9;++j)
- {
- double sum = 1.0; // this is very important, because exp(thetak x)=1
- for(int l = 0;l<2;++l)
- {
- double xi = 0.0;
- for(int k=0;k<4;++k)
- {
- xi += matrix[j][k]*theta[l][k];
- }
- sum += function_e(xi);
- }
- double xi = 0.0;
- for(int k=0;k<4;++k)
- {
- xi += matrix[j][k]*theta[0][k];
- }
- double p1 = function_e(xi)/sum;
- xi = 0.0;
- for(int k=0;k<4;++k)
- {
- xi += matrix[j][k]*theta[1][k];
- }
- double p2 = function_e(xi)/sum;
- double p3 = 1-p1-p2;
- for(int m = 0; m<4; ++m)
- {
- if(result[j]==1)
- {
- theta[0][m] = theta[0][m] + 0.001*(1-p1)*matrix[j][m];
- }
- else
- {
- theta[0][m] = theta[0][m] + 0.001*(-p1)*matrix[j][m];
- }
- if(result[j]==2)
- {
- theta[1][m] = theta[1][m] + 0.001*(1-p2)*matrix[j][m];
- }
- else
- {
- theta[1][m] = theta[1][m] + 0.001*(-p2)*matrix[j][m];
- }
- }
- }
- double likelyhood = 0.0;
- for(int j = 0;j<9;++j)
- {
- double sum = 1.0; // this is very important, because exp(thetak x)=1
- for(int l = 0;l<2;++l)
- {
- double xi = 0.0;
- for(int k=0;k<4;++k)
- {
- xi += matrix[j][k]*theta[l][k];
- }
- sum += function_e(xi);
- }
- double xi = 0.0;
- for(int k=0;k<4;++k)
- {
- xi += matrix[j][k]*theta[0][k];
- }
- double p1 = function_e(xi)/sum;
- xi = 0.0;
- for(int k=0;k<4;++k)
- {
- xi += matrix[j][k]*theta[1][k];
- }
- double p2 = function_e(xi)/sum;
- double p3 = 1-p1-p2;
- double ltheta = 0.0;
- if(result[j]==1)
- ltheta = log(p1);
- else if(result[j]==2)
- ltheta = log(p2);
- else if(result[j]==3)
- ltheta = log(p3);
- else
- {}
- printf("smaple %d: %f,%f,%f,likelyhood:%f\n",j,p1,p2,p3,ltheta);
- }
- }
- return 0;
- }
SoftMax regression的更多相关文章
- Softmax回归(Softmax Regression)
转载请注明出处:http://www.cnblogs.com/BYRans/ 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件 ...
- (六)6.10 Neurons Networks implements of softmax regression
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法 ...
- Deep Learning 学习随记(三)续 Softmax regression练习
上一篇讲的Softmax regression,当时时间不够,没把练习做完.这几天学车有点累,又特别想动动手自己写写matlab代码 所以等到了现在,这篇文章就当做上一篇的续吧. 回顾: 上一篇最后给 ...
- UFLDL实验报告1: Softmax Regression
PS:这些是今年4月份,跟斯坦福UFLDL教程时的实验报告,当时就应该好好整理的…留到现在好凌乱了 Softmax Regression实验报告 1.Softmax Regression实验描述 So ...
- ufldl学习笔记和编程作业:Softmax Regression(softmax回报)
ufldl学习笔记与编程作业:Softmax Regression(softmax回归) ufldl出了新教程.感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量 ...
- 学习笔记TF024:TensorFlow实现Softmax Regression(回归)识别手写数字
TensorFlow实现Softmax Regression(回归)识别手写数字.MNIST(Mixed National Institute of Standards and Technology ...
- TensorFlow实战之Softmax Regression识别手写数字
关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.c ...
- R︱Softmax Regression建模 (MNIST 手写体识别和文档多分类应用)
本文转载自经管之家论坛, R语言中的Softmax Regression建模 (MNIST 手写体识别和文档多分类应用) R中的softmaxreg包,发自2016-09-09,链接:https:// ...
- TensorFlow(2)Softmax Regression
Softmax Regression Chapter Basics generate random Tensors Three usual activation function in Neural ...
- 逻辑回归与神经网络还有Softmax regression的关系与区别
本文讨论的关键词:Logistic Regression(逻辑回归).Neural Networks(神经网络) 之前在学习LR和NN的时候,一直对它们独立学习思考,就简单当做是机器学习中的两个不同的 ...
随机推荐
- android 网络连接 HttpGet HttpPost方法
1.本文主要介绍利用HttpGet和HtppPost方法来获取网络json数据. 代码如下: public HttpData(String Url,HttpGetDataListener listen ...
- [ExtJS5学习笔记]第三十二节 sencha extjs 5与struts2的ajax交互配置
本文地址:http://blog.csdn.net/sushengmiyan/article/details/43487751 本文作者:sushengmiyan ------------------ ...
- dos2unix批量转换的一种方法
Linux本身提供了dos2unix和unix2dos两个命令来实现Windows和Linux文件的转换. 少量文件转换: 对于单个或少量的文件转换,可以直接使用命令,如: dos2unix file ...
- linux的 压缩与解压 命令集
bzip2压缩费时但效果好,而且支持hadoop的hdfs文件切分,gzip不行 bzip2 [-cdz] 文件名 -c :将压缩的过程输出到屏幕 -d :解压缩 -z :压缩 -# :压缩比的参数, ...
- Android-MVVM架构-Data Binding的使用
项目整体效果: Awesome-Android-MVVM 什么是MVVM, 为什么需要 MVVM? 如何在Android中使用Data Binding实现MVVM架构? 什么是MVVM , 为什么需要 ...
- 会声会影小成果分享(那段青春岁月)——校学习部宣传视频制作&生日祝福
大二的时候在校学习部当副部长,没有给干事们带去好的工作经验和管理方法,我净在折腾新媒体方面的东西,很惭愧的说,那时候申请了一个微信的公众号(HGXXB1314),我那时候以为自己很叼,最后是发现自己装 ...
- memcached实战系列(一)memcached安装
下载并安装Memcached服务器端 我用的是cenos6.5 64位系统. libevent是个程序库,它将Linux的epoll.BSD类操作系统的kqueue等事件处理功能封装成统一的接口,具有 ...
- java原码、补码、反码总结
1.1. java虚拟机整数 在java虚拟机中整数有byte.short.int.long四种 分别表示 8位.16位.32位.64位有符号整数.整数使用补码表示. 所以我们先了解一下原码和反码. ...
- UNIX环境高级编程——实现uid to name
setpwent()用来将getpwent()的读写地址指回文件开头,即从头读取密码文件中的账号数据. strcut passwd * getpwent(void); getpwent()用来从密码文 ...
- GCD API 理解 (一)
资料先行 GCD 深入理解:第一部分 GCD 深入理解:第二部分 以上两篇文章是关于GCD讲的比较好的文章,翻译自raywenderlich,该网站有很多关于iOS 开发的优秀文章. 引子 iOS 开 ...