Description

给下N,M,K.求
 
 

Input

输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示。

Output

如题

Sample Input

1 2
3 3

Sample Output

20

HINT

1<=N,M,K<=5000000,1<=T<=2000

题解:

(若因博客园导致数学公式重叠,建议Ctrl+滑轮,重新缩放)

$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}\gcd(i,j)^{k}$

$=\sum_{d=1}^{n}d^{k}\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{d} \rfloor}[\gcd(i,j)==1]$

$=\sum_{d=1}^{n} d^{k}\sum_{k=1}^{\lfloor \frac{n}{d} \rfloor}\mu(k)\lfloor\frac{n}{kd}\rfloor\lfloor\frac{m}{kd}\rfloor$

$=\sum_{T=1}^{n}\lfloor \frac{n}{T}\rfloor\lfloor \frac{m}{T}\rfloor\sum_{d|T}\mu(\frac{T}{d})d^{k}$

再设:$g(T)=\sum_{d|T}\mu(\frac{T}{d})d^{k}$

当T是质数时

$g(T)=T^{k}\mu(1)+1^{k}\mu(T)=T^{k}-1$

当i与p互质时

对于$g(i)$约数的每个枚举其内部多了$g(p)$的约数枚举

$\therefore g(i*p)=g(i)*g(p)$

当i与p不互质时

首先$i=p^{x}*t$

由莫比乌斯函数定义可知,对g(i)存在贡献的d中至少含有x-1个p

因此在$g(i*p)$的枚举中,每个数值d(i*p)都对应着$g(i)$中的一个枚举数值d(i)满足:
$d(i*p)=d(i)*p$

$                 =g(i)*p^{k} $

然后分块+线筛即可

【bzoj 4407】于神之怒加强版的更多相关文章

  1. BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1067  Solved: 494[Submit][Status][Disc ...

  2. bzoj 4407 于神之怒加强版 (反演+线性筛)

    于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1184  Solved: 535[Submit][Status][Discuss] D ...

  3. BZOJ 4407 于神之怒加强版

    http://www.lydsy.com/JudgeOnline/problem.php?id=4407 题意: 给下N,M,K.求 思路:  来自:http://blog.csdn.net/ws_y ...

  4. ●BZOJ 4407 于神之怒加强版

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4407 题解: 莫比乌斯反演 直接套路化式子 $\begin{align*}ANS&= ...

  5. bzoj 4407 于神之怒加强版——反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4407 \( ans = \sum\limits_{D=1}^{min(n,m)}\frac{ ...

  6. bzoj 4407 于神之怒加强版 —— 反演+筛积性函数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4407 推导如这里:https://www.cnblogs.com/clrs97/p/5191 ...

  7. BZOJ 4407: 于神之怒加强版 [莫比乌斯反演 线性筛]

    题意:提前给出\(k\),求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m gcd(i,j)^k\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d|D ...

  8. BZOJ.4407.于神之怒加强版(莫比乌斯反演)

    题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...

  9. bzoj 4407: 于神之怒加强版【莫比乌斯反演+线性筛】

    看着就像反演,所以先推式子(默认n<m): \[ \sum_{d=1}^{n}d^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d] \] \[ =\sum_{d=1} ...

  10. BZOJ 4407: 于神之怒加强版 莫比乌斯反演 + 线筛积性函数

    Description 给下N,M,K.求     Input 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意 ...

随机推荐

  1. python字符串27种常见的方法

    如有字符串 mystr = 'hello world itcast and itcastcpp' ,以下是常见的操作: <1>find 检测 str 是否包含在 mystr中,如果是返回开 ...

  2. java基础语法(一)

    java基础语法(一) 1.类是一种抽象的概念,对象是类的一种具体表示形式,是具体的概念.先有类,然后由类来生成 对象(Object).对象又叫做实例(Instance). 2.类由两大部分构成:属性 ...

  3. memocache 分布式搭建

    memcached+magent实现memcached集群   首先说明下memcached存在如下问题 本身没有内置分布式功能,无法实现使用多台Memcache服务器来存储不同的数据,最大程度的使用 ...

  4. Zabbix如何设置脚本告警

    设置告警脚本的路径 # vim /etc/zabbix/zabbix_server.confAlertScriptsPath=/usr/lib/zabbix/alertscripts 创建脚本 在这里 ...

  5. python---haproxy---文件操作

    haproxy 文件操作,操作属于简单操作,不复杂 # -*- coding:utf-8 -*- # LC def search(*args): #查找Haproxy文件中的服务器 list1 = [ ...

  6. JavaScript头像上传器的实现

    最近做这方面的东西,刚开始准备用一个开源项目:https://github.com/yueyoum/django-upload-avatar 后来发现这个开源组件的原设计者的定制化选项设计略显复杂,发 ...

  7. nginx防盗链

    盗链是指一个网站的资源(图片或附件)未经允许在其它网站提供浏览和下载.尤其热门资源的盗链,对网站带宽的消耗非常大,本文通过nginx的配置指令location来实现简单的图片和其它类型文件的防盗链. ...

  8. 【转】javascript 作用域链

    JavaScript函数的作用域链分为定义时作用域链和运行时作用域链: 函数被定义的时候,它有一个属性[[scope]]标明它的定义作用域链,定义时作用域链[[scope]]遵守这样的规则:一个函数的 ...

  9. 第一章 初识数据库Mysql

    初识数据库Mysql(my)   在企业中 percona: 一.数据库基础知识 Mysql是一个开放源代码的数据库管理系统(DBMS),它是由Mysql AB公司开发.发布并支持的.Mysql是一个 ...

  10. juniper srx 配置

    天涯海角- juniper为人所熟悉的一定是从netscreen开始的,作为一线防火墙品牌,还是有很高的地位.但是以前玩netscreen,都是用的网页版去配置,而且网页版做得很不错.但是现在nets ...