BZOJ_2561_最小生成树_最小割

题意: 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上?

分析:

如果所有边中有能使u,v连通且权值比L小的,那新加的这条边就不会出现在最小生成树上,最大生成树同理,那么问题就转化成求u,v之间的最小割,最小和最大分别做一次,相加即可。

注意无向图连边时容量。

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
using namespace std;
#define N 20020
#define M 400050
#define inf 100000000
struct A
{
int a,b,v;
}e[M];
int S,T,ans;
int head[N],to[M],nxt[M],cnt=1,flow[M],n,m;
int dep[N];
void add(int u,int v,int f)
{
to[++cnt]=v;
nxt[cnt]=head[u];
head[u]=cnt;
flow[cnt]=f;
}
bool bfs()
{
queue <int> q;
memset(dep,0,sizeof(dep));
dep[S]=1;q.push(S);
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=head[x];i;i=nxt[i])
{
if(!dep[to[i]]&&flow[i])
{
dep[to[i]]=dep[x]+1;
if(to[i]==T)return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dfs(int x,int mf)
{
if(x==T)return mf;
int nf=0;
for(int i=head[x];i;i=nxt[i])
{
if(dep[to[i]]==dep[x]+1&&flow[i])
{
int tmp=dfs(to[i],min(flow[i],mf-nf));
nf+=tmp;
flow[i]-=tmp;
flow[i^1]+=tmp;
if(nf==mf)break;
}
}
dep[x]=0;
return nf;
}
int dinic()
{
int f,sum=0;
while(bfs())
{
while(f=dfs(S,inf))
{
sum+=f;
}
}
return sum;
}
int main()
{
scanf("%d%d",&n,&m);
int x,y,z;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&e[i].a,&e[i].b,&e[i].v);
}
scanf("%d%d%d",&S,&T,&z);
for(int i=1;i<=m;i++)
{
if(e[i].v<z)
{
add(e[i].a,e[i].b,1);
add(e[i].b,e[i].a,1);
}
}
ans+=dinic();
memset(head,0,sizeof(head));
cnt=1;
for(int i=1;i<=m;i++)
{
if(e[i].v>z)
{
add(e[i].a,e[i].b,1);
add(e[i].b,e[i].a,1);
}
}
printf("%d",ans+dinic());
}

BZOJ_2561_最小生成树_最小割的更多相关文章

  1. BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan

    BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤ ...

  2. BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割

    BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作 ...

  3. LOJ_6045_「雅礼集训 2017 Day8」价 _最小割

    LOJ_6045_「雅礼集训 2017 Day8」价 _最小割 描述: 有$n$种减肥药,$n$种药材,每种减肥药有一些对应的药材和一个收益. 假设选择吃下$K$种减肥药,那么需要这$K$种减肥药包含 ...

  4. BZOJ_3144_[Hnoi2013]切糕_最小割

    BZOJ_3144_[Hnoi2013]切糕_最小割 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R ...

  5. BZOJ_3438_小M的作物_最小割

    BZOJ_3438_小M的作物_最小割 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为容量是无穷),现在,小P有n中作物的种子,每种作物的种子 有1个(就是可以种一棵作物) ...

  6. BZOJ_4177_Mike的农场_最小割

    BZOJ_4177_Mike的农场_最小割 Description Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不 ...

  7. [bzoj2561]最小生成树_网络流_最小割_最小生成树

    最小生成树 bzoj-2561 题目大意:题目链接. 注释:略. 想法: 我们发现: 如果一条权值为$L$的边想加入到最小生成树上的话,需要满足一下条件. 就是求出原图的最小生成树之后,这个边当做非树 ...

  8. bzoj千题计划322:bzoj2561: 最小生成树(最小割)

    https://www.lydsy.com/JudgeOnline/problem.php?id=2561 考虑Kruscal算法求最小生成树的流程 如果 u和v之间的长为L的边能出现在最小生成树里, ...

  9. BZOJ2561 最小生成树(最小割)

    考虑kruskal的过程:按边权从小到大考虑,如果这条边的两端点当前不连通则将其加入最小生成树.由此可以发现,某条边可以在最小生成树上的充要条件是其两端点无法通过边权均小于它的边连接. 那么现在我们需 ...

随机推荐

  1. c语言 基本运算

    计算机的基本能力就是计算,所以一门程序设计语言的计算能力是非常重要的.C语言之所以无所不能,是因为它不仅有丰富的数据类型,还有强大的计算能力.C语言一共有34种运算符,包括了常见的加减乘除运算.这讲就 ...

  2. 1-bit and 2-bit Characters

    We have two special characters. The first character can be represented by one bit 0. The second char ...

  3. JDBC基本使用

    J2EE技术规范(二)——JDBC 分类: java2012-12-03 14:25 1060人阅读 评论(8) 收藏 举报 一.了解JDBC (1) JDBC是以统一方式访问数据库的API (2) ...

  4. 入职第二天:使用koa搭建node server是种怎样的体验

    今天是我入职第二天,leader跟我说,昨天配置好了服务端渲染的文件,今天就先研究研究如何使用koa来搭建一个node server吧! 按照惯例,我去koa官网查了一下什么是koa,结果官网很简单的 ...

  5. C++中,用类和重载运算符写高精模板

    先放代码: #include<iostream> #include<cstdio> #include<cstring> using namespace std; s ...

  6. 浏览器选择最新IE渲染

    <meta http-equiv="X-UA-Compatible" content="IE=edge" />

  7. jq监听input-val变化事件

    $('body').on('input propertychange', '.info-number-val-box', function(event) { xxxxx });

  8. JDK安装:CentOS和Windows环境

    Windows上JDK安装             1:下载jdk.  地址在  http://www.oracle.com/index.html  >downloads>se>Ja ...

  9. C#备份及还原数据库的实现

    使用前要导入SQLDMO.dll 下载地址:http://down.51cto.com/data/853937 1.在用户的配置时,我们需要列出当前局域网内所有的数据库服务器,并且要列出指定服务器的所 ...

  10. win10装ubuntu双系统

    由于在win下进行web开发出现各种问题相当头疼. 所以今天折腾了一天想装个ubuntu,查看了网上好多教程,不得不说,网上的人很多都是不负责任的,教程都是过时根本就不负责任,关键的地方一笔带过,简单 ...