BZOJ_4872_[Shoi2017]分手是祝愿_概率与期望

Description

Zeit und Raum trennen dich und mich.
时空将你我分开。B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为
从 1 到 n 的正整数。每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏
的目标是使所有灯都灭掉。但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被
改变,即从亮变成灭,或者是从灭变成亮。B 君发现这个游戏很难,于是想到了这样的一个策略,每次等概率随机
操作一个开关,直到所有灯都灭掉。这个策略需要的操作次数很多, B 君想到这样的一个优化。如果当前局面,
可以通过操作小于等于 k 个开关使所有灯都灭掉,那么他将不再随机,直接选择操作次数最小的操作方法(这个
策略显然小于等于 k 步)操作这些开关。B 君想知道按照这个策略(也就是先随机操作,最后小于等于 k 步,使
用操作次数最小的操作方法)的操作次数的期望。这个期望可能很大,但是 B 君发现这个期望乘以 n 的阶乘一定
是整数,所以他只需要知道这个整数对 100003 取模之后的结果。

Input

第一行两个整数 n, k。
接下来一行 n 个整数,每个整数是 0 或者 1,其中第 i 个整数表示第 i 个灯的初始情况。
1 ≤ n ≤ 100000, 0 ≤ k ≤ n;

Output

输出一行,为操作次数的期望乘以 n 的阶乘对 100003 取模之后的结果。

Sample Input

4 0
0 0 1 1

Sample Output

512
 

状态神了,想了很长时间才明白。
可以发现每个灯控制的都是不同的,并且不会有几种操作拼起来和另外的一些操作等价。
这就说明每个状态到结束状态还剩的步骤是固定的。即‘正确’的操作是确定的。
那么我们只需要知道当前状态到结束状态还剩几步正确的操作,而不需要知道确切的状态。
接着,考虑差分设状态,设F[i]为从 i步错误的状态 到 i-1步错误的状态 所需要的步数的期望。
这样转移就没有环了,F[i]=i/n+(n-i)/n*(1+F[i+1]+F[i])。化简一下可得F[i]=((n-i)*F[i+1]+n)/i。
然后求个逆元从大到小递推即可。注意只需要推到F[k]。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 100050
typedef long long ll;
ll mod=100003,b[N];
int n,v[N],degree,num;
ll qp(ll x,ll y) {
ll re=1;
while(y) {
if(y&1ll) re=re*x%mod;
x=x*x%mod;
y>>=1ll;
}
return re;
}
int main() {
scanf("%d%d",&n,&degree);
int i,j;
for(i=1;i<=n;i++) scanf("%d",&v[i]);
for(i=n;i;i--) {
if(v[i]) {
for(j=1;j*j<=i;j++) {
if(i%j==0) {
v[j]^=1;
if(j*j!=i) v[i/j]^=1;
}
}
num++;
}
}
for(i=n;i;i--) {
b[i]=(b[i+1]*(n-i)%mod+n)%mod*qp(1ll*i,mod-2)%mod;
}
ll ans=0;
if(num<=degree) ans=num;
else {
for(i=num;i>degree;i--) {
ans=(ans+b[i])%mod;
}
ans=(ans+degree)%mod;
}
for(i=1;i<=n;i++) {
ans=ans*i%mod;
}
printf("%lld\n",ans);
}

BZOJ_4872_[Shoi2017]分手是祝愿_概率与期望的更多相关文章

  1. BZOJ4872: [Shoi2017]分手是祝愿【概率期望DP】【思维好题】

    Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...

  2. 【BZOJ4872】[Shoi2017]分手是祝愿 数学+期望DP

    [BZOJ4872][Shoi2017]分手是祝愿 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n ...

  3. bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]

    4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod ...

  4. SHOI2017 分手是祝愿

    分手是祝愿 有

  5. BZOJ4872:[SHOI2017]分手是祝愿——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=4872 https://www.luogu.org/problemnew/show/P3750 Zei ...

  6. bzoj 4872: [Shoi2017]分手是祝愿

    Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...

  7. Bzoj4872: [Shoi2017]分手是祝愿

    题面 Bzoj Sol 首先从大向小,能关就关显然是最优 然后 设\(f[i]\)表示剩下最优要按i个开关的期望步数,倒推过来就是 \[ f[i]=f[i-1]*i*inv[n]+f[i+1]*(n- ...

  8. 【bzoj4872】[Shoi2017]分手是祝愿 数论+期望dp

    题目描述 Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为从 ...

  9. 【bzoj4872】[Shoi2017]分手是祝愿 期望dp

    Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...

随机推荐

  1. DB2常用命令小结

    PS:执行命令前需要进入DB2的账户下:su db2inst1 修改密码:更改相应的操作系统密码即可,windows上可以更改db2admin的密码,linux上更改db2inst1的密码即可,db2 ...

  2. JFace dailog button事件中刷新透视图异常 Trying to execute the disabled command org.eclipse.ui.window.closePerspective

    报错的代码为 protected void buttonPressed(int buttonId) { Display.getDefault().syncExec(new Runnable() { p ...

  3. java安全——BASE64

    这个主题主要是关于java安全的,应该来说算是个大杂烩吧,但是又不缺乏实用性,算是作为一个总结,用的时候可以作为参考. 1.使用BASE64加解密 在java加密技术中,BASE64算是一种最简单.最 ...

  4. Spring2.5整合Ibatis入门级开发实例

      分类: SPRING IBATIS2010-11-22 20:19 1170人阅读 评论(0) 收藏 举报 ibatisspringstringpropertiesclassuser 最近一直在看 ...

  5. OSGI介绍

    OSGI介绍 OSGI简介 OSGI (Open Service Gateway Initiative)联盟成立于1999 年,它是一个非盈利的国际组织,旨在建立一个开放的服务规范,为通过网络向设备提 ...

  6. Django和Angular.js模板标签冲突的解决方式

    参考文章:http://yanhua365.lofter.com/post/b417f_1f0361 http://stackoverflow.com/questions/8302928/angula ...

  7. 安装JDK,配置环境变量

    计算机(右键)-属性-高级系统设置-环境变量1.新建系统变量 : JAVA_HOMEC:\Program Files (x86)\Java\jdk1.6.0_10(你的JDK安装路径)2.在系统变量p ...

  8. vim编辑器常见命令归纳大全

    Esc:命令行模式 i:插入命令 a:附加命令 o:打开命令 c:修改命令 r:取代命令 s:替换命令 以上进入文本输入模式   : 进入末行模式 末行模式: w:保存 q:退出,没保存则无法退出 w ...

  9. 微信小程序函数调用监控

    微信小程序之无埋点函数调用监控 有时候,面对一个bug,左思右想就是无法理解为什么. 我就有过这样的经历,耗时整个一个晚上,后来还是放弃了.不得不在所有可能的点都加上日志,部署等待再次报错,真的很让人 ...

  10. 基于Spring的RPC通讯模型.

    一.概念和原理 RPC(remote procedure call),远程过程调用,是客户端应用和服务端之间的会话.在客户端,它所需要的一些功能并不在该应用的实现范围之内,所以应用要向提供这些功能的其 ...