题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\)


套路推♂倒

\[\sum_{D=1}^n \sum_{d|D} f(d)\mu(\frac{D}{d}) \frac{n}{D} \frac{m}{D}
\]

这次函数是\(g = (f*\mu )\),\(f\)显然不是积性函数,但我们照样可以用线性筛

具体做法我晚上回家再补吧草稿纸忘带了...

补:

  • \(g(p^a)=p-(p-1)\)

    因为卷了\(\mu\)所以只有\(\mu(1)\)和\(\mu(p)\)时有贡献
  • 考虑\(g(p_1^{a_1} p_2^{a_2}...p_k^{a_k})\),相当于选p的集合,每种p只能选一个放到\(\mu\)里,其余部分在\(f\)里
  • 所有\(a\)相等时,所有集合的结果都是\(a\),只有全选时是\(a-1\),系数\((-1)^k\),那么结果就是\(-(-1)^k\)咯
  • 不相等时,假设最大次数\(a\)有\(b\)个质数,\(a\)出现\(2^b\)此,\(a-1\)出现\(2^{k-b}\)次,正负都抵消了,所以结果为0



线性筛保存最小质因子幂次后的结果和幂次,利用之前的$g$值

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define pii pair<int, int>
#define MP make_pair
#define fir first
#define sec second
typedef long long ll;
const int N=1e7+5;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0'; c=getchar();}
return x*f;
} int n, m, k;
int notp[N], p[N], g[N]; pii lp[N];
void sieve(int n) {
g[1] = 0;
for(int i=2; i<=n; i++) {
if(!notp[i]) {
p[++p[0]] = i;
g[i] = 1;
lp[i] = MP(i, 1);
}
for(int j=1; j<=p[0] && i*p[j]<=n; j++) {
int t = i*p[j];
notp[t] = 1;
if(i%p[j] == 0) {
lp[t] = MP(lp[i].fir * p[j], lp[i].sec + 1);
int rem = i / lp[i].fir;
if(rem == 1) g[t] = 1;
else g[t] = lp[t].sec == lp[rem].sec ? -g[rem] : 0;
break;
}
lp[t] = MP(p[j], 1);
g[t] = lp[t].sec == lp[i].sec ? -g[i] : 0;
}
}
for(int i=1; i<=n; i++) g[i] += g[i-1];
}
ll cal(int n, int m) {
if(n>m) swap(n, m);
ll ans=0; int r;
for(int i=1; i<=n; i=r+1) {
r = min(n/(n/i), m/(m/i));
ans += (ll) (g[r] - g[i-1]) * (n/i) * (m/i);
}
return ans;
} int main() {
//freopen("in","r",stdin);
sieve(N-1);
int T=read();
while(T--) {
n=read(); m=read();
printf("%lld\n", cal(n, m));
}
}

BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]的更多相关文章

  1. bzoj 3309 DZY Loves Math 莫比乌斯反演

    DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1303  Solved: 819[Submit][Status][Dis ...

  2. 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)

    [BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...

  3. 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛

    Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...

  4. [BZOJ3309]DZY Loves Math(莫比乌斯反演+线性筛)

    $\sum\limits_{T=1}^{n}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum\limits_{d|T}f(d)\mu(\fr ...

  5. BZOJ 3309 DZY Loves Math ——莫比乌斯反演

    枚举$d=gcd(i,j)$ 然后大力反演 ——来自Popoqqq的博客. 然后大力讨论后面的函数的意义即可. http://blog.csdn.net/popoqqq/article/details ...

  6. bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...

  7. BZOJ 3309: DZY Loves Math 莫比乌斯反演+打表

    有一个神奇的技巧——打表 code: #include <bits/stdc++.h> #define N 10000007 #define ll long long #define se ...

  8. 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化

    3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...

  9. ●BZOJ 3309 DZY Loves Math

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...

随机推荐

  1. os系统

    任务延时函数OSTimeDly 功能:调用该函数的任务将自己延时一段时间并执行一次任务调度,一旦规定的延时时间完成或有其它的任务通过调用OSTimeDlyResume()取消了延时,调用OSTimeD ...

  2. 电脑打不开网页,使用dns优化下就可以了。

    通过电脑管家dns优化下就可以了.启用114DNS

  3. js数组操作记录

    一 .splice() 方法向/从数组中添加/删除项目,然后返回被删除的项目. arrayObject.splice(index,howmany,item1,.....,itemX) 参数 描述 in ...

  4. 关于Vue的路由、脚手架笔记

    在页面引入vue-router.js文件,开始配置路由 <div id="box"> <ul><li> <a v-link="{ ...

  5. xshell 与 putty

    http://blog.csdn.net/efine_dxq/article/details/54599184 一.Xshell 与 putty概念 Xshell是一个强大的安全终端模拟软件,它支持S ...

  6. 7系列高速收发器总结 GTP IP核使用篇

    上一篇7系列收发器博文讲解了GTP IP核的基本配置,本文继续分析如何将它使用起来.生成IP核后打开example design,先看看工程中包含的文件结构. 顶层文件下包含了gtp ip核系统顶层文 ...

  7. android 基础02 - Activity 的生命周期及状态

    返回栈 Android 中的 Activity 是可以层叠的,当我们启动一个新的 Activity 时,就会覆盖在原有的 Activity 之上, 点击 Back 会销毁当前 Activity,下面的 ...

  8. 微调数据库表结构,30 分钟搞定 WordPress 数据库查询缓慢问题

    同事的美女图片站,基于 WordPress 搭建的,因为数据越来越多,变得慢,我从 PHP slow log 里面看出是 WordPress 有些查询总是很慢,即使已经安装了页面缓存插件,但是由于页面 ...

  9. MySQL Index Merge Optimization

    Index Merge用在通过一些range scans得到检索数据行和合并成一个整体.合并可以通过 unions,intersections,或者unions-intersection运用在底层的扫 ...

  10. salesforce零基础学习(八十五)streaming api 简单使用(接近实时获取你需要跟踪的数据的更新消息状态)

    Streaming API参考链接: https://trailhead.salesforce.com/en/modules/api_basics/units/api_basics_streaming ...