BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\)
套路推♂倒
\]
这次函数是\(g = (f*\mu )\),\(f\)显然不是积性函数,但我们照样可以用线性筛
具体做法我晚上回家再补吧草稿纸忘带了...
补:
- \(g(p^a)=p-(p-1)\)
因为卷了\(\mu\)所以只有\(\mu(1)\)和\(\mu(p)\)时有贡献 - 考虑\(g(p_1^{a_1} p_2^{a_2}...p_k^{a_k})\),相当于选p的集合,每种p只能选一个放到\(\mu\)里,其余部分在\(f\)里
- 所有\(a\)相等时,所有集合的结果都是\(a\),只有全选时是\(a-1\),系数\((-1)^k\),那么结果就是\(-(-1)^k\)咯
- 不相等时,假设最大次数\(a\)有\(b\)个质数,\(a\)出现\(2^b\)此,\(a-1\)出现\(2^{k-b}\)次,正负都抵消了,所以结果为0
线性筛保存最小质因子幂次后的结果和幂次,利用之前的$g$值
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define pii pair<int, int>
#define MP make_pair
#define fir first
#define sec second
typedef long long ll;
const int N=1e7+5;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1; c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0'; c=getchar();}
return x*f;
}
int n, m, k;
int notp[N], p[N], g[N]; pii lp[N];
void sieve(int n) {
g[1] = 0;
for(int i=2; i<=n; i++) {
if(!notp[i]) {
p[++p[0]] = i;
g[i] = 1;
lp[i] = MP(i, 1);
}
for(int j=1; j<=p[0] && i*p[j]<=n; j++) {
int t = i*p[j];
notp[t] = 1;
if(i%p[j] == 0) {
lp[t] = MP(lp[i].fir * p[j], lp[i].sec + 1);
int rem = i / lp[i].fir;
if(rem == 1) g[t] = 1;
else g[t] = lp[t].sec == lp[rem].sec ? -g[rem] : 0;
break;
}
lp[t] = MP(p[j], 1);
g[t] = lp[t].sec == lp[i].sec ? -g[i] : 0;
}
}
for(int i=1; i<=n; i++) g[i] += g[i-1];
}
ll cal(int n, int m) {
if(n>m) swap(n, m);
ll ans=0; int r;
for(int i=1; i<=n; i=r+1) {
r = min(n/(n/i), m/(m/i));
ans += (ll) (g[r] - g[i-1]) * (n/i) * (m/i);
}
return ans;
}
int main() {
//freopen("in","r",stdin);
sieve(N-1);
int T=read();
while(T--) {
n=read(); m=read();
printf("%lld\n", cal(n, m));
}
}
BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]的更多相关文章
- bzoj 3309 DZY Loves Math 莫比乌斯反演
DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1303 Solved: 819[Submit][Status][Dis ...
- 【BZOJ3309】DZY Loves Math 莫比乌斯反演+线性筛(好题)
[BZOJ3309]DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10 ...
- 【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛
Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b, ...
- [BZOJ3309]DZY Loves Math(莫比乌斯反演+线性筛)
$\sum\limits_{T=1}^{n}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum\limits_{d|T}f(d)\mu(\fr ...
- BZOJ 3309 DZY Loves Math ——莫比乌斯反演
枚举$d=gcd(i,j)$ 然后大力反演 ——来自Popoqqq的博客. 然后大力讨论后面的函数的意义即可. http://blog.csdn.net/popoqqq/article/details ...
- bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...
- BZOJ 3309: DZY Loves Math 莫比乌斯反演+打表
有一个神奇的技巧——打表 code: #include <bits/stdc++.h> #define N 10000007 #define ll long long #define se ...
- 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化
3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...
- ●BZOJ 3309 DZY Loves Math
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...
随机推荐
- os系统
任务延时函数OSTimeDly 功能:调用该函数的任务将自己延时一段时间并执行一次任务调度,一旦规定的延时时间完成或有其它的任务通过调用OSTimeDlyResume()取消了延时,调用OSTimeD ...
- 电脑打不开网页,使用dns优化下就可以了。
通过电脑管家dns优化下就可以了.启用114DNS
- js数组操作记录
一 .splice() 方法向/从数组中添加/删除项目,然后返回被删除的项目. arrayObject.splice(index,howmany,item1,.....,itemX) 参数 描述 in ...
- 关于Vue的路由、脚手架笔记
在页面引入vue-router.js文件,开始配置路由 <div id="box"> <ul><li> <a v-link="{ ...
- xshell 与 putty
http://blog.csdn.net/efine_dxq/article/details/54599184 一.Xshell 与 putty概念 Xshell是一个强大的安全终端模拟软件,它支持S ...
- 7系列高速收发器总结 GTP IP核使用篇
上一篇7系列收发器博文讲解了GTP IP核的基本配置,本文继续分析如何将它使用起来.生成IP核后打开example design,先看看工程中包含的文件结构. 顶层文件下包含了gtp ip核系统顶层文 ...
- android 基础02 - Activity 的生命周期及状态
返回栈 Android 中的 Activity 是可以层叠的,当我们启动一个新的 Activity 时,就会覆盖在原有的 Activity 之上, 点击 Back 会销毁当前 Activity,下面的 ...
- 微调数据库表结构,30 分钟搞定 WordPress 数据库查询缓慢问题
同事的美女图片站,基于 WordPress 搭建的,因为数据越来越多,变得慢,我从 PHP slow log 里面看出是 WordPress 有些查询总是很慢,即使已经安装了页面缓存插件,但是由于页面 ...
- MySQL Index Merge Optimization
Index Merge用在通过一些range scans得到检索数据行和合并成一个整体.合并可以通过 unions,intersections,或者unions-intersection运用在底层的扫 ...
- salesforce零基础学习(八十五)streaming api 简单使用(接近实时获取你需要跟踪的数据的更新消息状态)
Streaming API参考链接: https://trailhead.salesforce.com/en/modules/api_basics/units/api_basics_streaming ...