2337: [HNOI2011]XOR和路径

题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和


这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间不能异或所以不能直接求

发现每个二进制位是独立的,我们可以一位一位考虑,设当前考虑第i位

\(f[u]\)表示从u到n异或和为1的概率,

\[f[u] = \sum_{(u,v) \in E,\ w(u,v)的第i位是1} \frac{f(v)}{degree_u} \\
f[u] = \sum_{(u,v) \in E,\ w(u,v)的第i位是0} \frac{1-f(v)}{degree_u} \\
f[n]=0
\]

可以同乘\(degree_u\)来减少精度损失

为什么要逆推呢?

我们需要知道异或和不为1的概率\(1-f(i)\)

如果正推的话,\(1-f(i)\)代表的不仅从1到i异或和不为1的概率,还包含了从1不走到i的概率,无法转移

对于逆推,一定是从i走到n,\(1-f(i)\)还是走到n,就没有这样的问题

注意自环存在!这时候只能连一次边并且度数只能加1

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef unsigned long long ll;
const int N=105, P=1e9+7;
const double eps=1e-8;
inline int read() {
char c=getchar(); int x=0, f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
} int n, m, u, v, w, Max;
struct edge{int v, w, ne;}e[N*N<<1];
int cnt=1, h[N], de[N];
inline void ins(int u, int v, int w) { e[++cnt]=(edge){v, w, h[u]}; h[u]=cnt; }
double a[N][N];
void build(int now) {
memset(a, 0, sizeof(a));
a[n][n]=1; a[n][n+1]=0;
for(int u=1; u<n; u++) {
a[u][u] = de[u];
for(int i=h[u];i;i=e[i].ne) {
int v=e[i].v;
if(e[i].w & now) a[u][v]++, a[u][n+1]++;
else a[u][v]--;
}
}
//for(int i=1; i<=n; i++) for(int j=1; j<=n+1; j++) printf("%lf%c",a[i][j],j==n+1?'\n':' ');
}
void gauss() {
for(int i=1; i<=n; i++) {
int r=i;
for(int j=i; j<=n; j++) if(abs(a[j][i])>abs(a[r][i])) r=j;
if(r!=i) for(int j=1; j<=n+1; j++) swap(a[r][j], a[i][j]); for(int k=i+1; k<=n; k++) if(abs(a[k][i]) > eps) {
double t = a[k][i]/a[i][i];
for(int j=i; j<=n+1; j++) a[k][j] -= t*a[i][j];
}
}
for(int i=n; i>=1; i--) {
for(int j=n; j>i; j--) a[i][n+1] -= a[i][j]*a[j][n+1];
a[i][n+1] /= a[i][i];
}
}
int main() {
freopen("in","r",stdin);
n=read(); m=read();
for(int i=1; i<=m; i++) {
u=read(); v=read(); w=read(); Max=max(Max, w);
de[u]++;
ins(u, v, w); if(u!=v) ins(v, u, w), de[v]++;
}
double ans=0;
for(int now=1; now<=Max; now<<=1)
build(now), gauss(), ans += now*a[1][n+1];
printf("%.3lf", ans);
}

BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]的更多相关文章

  1. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  2. BZOJ2337:[HNOI2011]XOR和路径(高斯消元)

    Description 给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数.试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大.该路径可以重复 ...

  3. BZOJ2337: [HNOI2011]XOR和路径(高斯消元,期望)

    解题思路: Xor的期望???怕你不是在逗我. 按为期望,新技能get 剩下的就是游走了. 代码: #include<cmath> #include<cstdio> #incl ...

  4. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

  5. bzoj 2337 [HNOI2011]XOR和路径【高斯消元+dp】

    首先,我们发现,因为是无向图,所以相连的点之间是有"依赖性"的,所以不能直接用dp求解. 因为是xor,所以按位处理,于是列线性方程组,设$ x[i] $为点i到n异或和为1的期望 ...

  6. BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算

    BZOJ 2337 XOR和路径 题解 这道题和游走那道题很像,但又不是完全相同. 因为异或,所以我们考虑拆位,分别考虑每一位: 设x[u]是从点u出发.到达点n时这一位异或和是1的概率. 对于所有这 ...

  7. bzoj 2337: [HNOI2011]XOR和路径

    Description Input Output Sample Input Sample Output HINT Source Day2 终于把这个史前遗留的坑给填了... 首先异或的话由位无关性,可 ...

  8. ●BZOJ 2337 [HNOI2011]XOR和路径

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2337题解: 概率dp, 因为异或的每一位之间没有关系,我们就依次考虑每一位k.(即边权要么为 ...

  9. BZOJ 2337 [HNOI2011]XOR和路径 ——期望DP

    首先可以各位分开求和 定义$f(i)$表示从i到n的期望值,然后经过一些常识,发现$f(n)=1$的时候的转移,然后直接转移,也可以找到$f(n)=0$的转移. 然后高斯消元31次就可以了. #inc ...

随机推荐

  1. hdu_2030

    一个小小知识点,统计字符串中汉字出现的次数,直接给出代码 //ASCII码的范围是0-127所以,超出范围的都是汉字,因为一个汉字占两个字符位置,所以结果除以2就可以了 #include<cst ...

  2. poj_3281Dining(网络流+拆点)

    poj_3281Dining(网络流+拆点) 标签: 网络流 题目链接 题意: 一头牛只吃特定的几种食物和特定的几种饮料,John手里每种食物和饮料都只有一个,问最多能够满足几头牛的需求(水和食物都必 ...

  3. cesium编程入门(四)界面介绍及小控件隐藏

    感性认识 界面介绍,viewer Geocoder : 查找位置工具,查找到之后会将镜头对准找到的地址,默认使用bing地图 Home Button :视角返回初始位置. Scene Mode Pic ...

  4. 解决mysql不是内部或外部命令

    安装Mysql后,当我们在cmd中敲入mysql时会出现'Mysql'不是内部或外部命令,也不是可运行的程序或其处理文件. 工具/原料 mysql cmd 方法/步骤 1 打开我的电脑在我的电脑右键中 ...

  5. 将本地的项目导入到github仓库总结lxw

    关键步骤: 第一:git clone https://github.com/lxw18231857001/demo-.git           #把github上面的仓库克隆到本地 本地项目文件夹下 ...

  6. ecshop商城_

    一.Ecshop简介: ECShop是Comsenz公司推出的一款B2C独立网店系统,适合企业及个人快速构建个性化网上商店.系统是基于PHP语言及MYSQL数据库构架开发的跨平台开源程序. ECSho ...

  7. iOS的相对路径和绝对路径

    iOS程序有固定的文件访问限制,只能在自己的沙盒内. UIImage *img=[UIImage imageNamed:@"cellicon.png"]; 这段代码从相对路径加载了 ...

  8. 一篇文章帮你解决python的包管理

    写python代码的人都知道,一个项目写下下来,不可避免的都需要使用很多第三方包,通常我们都是通过pip install ,然而当我们需要上线的时候问题来了,如果中间你自己不记得自己安装了多少个包,这 ...

  9. 在单体应用的一些DDD实践经验

    阅读此文需要一定的DDD基础,如果你是第一次接触DDD读者,建议先去阅读一些DDD相关的书籍或者文章之后再来阅读本文. 背景 自从我在团队中推行DDD以来,我们团队经历了一系列的磨难--先是把核心项目 ...

  10. Go_认识golang

    官方地址:https://golang.org/ 什么是Go? 支持并发.垃圾回收的编译型 系统编程语言 Go语言有哪些特点? 1. 类型安全 和 内存安全 2. 以非常直观和极低代价的方案实现高并发 ...