以下是实验设计
设计一个一维的数据,14个数据,7个成一组,一个高斯分布,整体数据隐含了2个高斯分布。
系统最初给出第一个数属于z0的概率0.9,最后一个数属于在z1的概率0.9,其余数据不可判定。
迭代到最后,自动识别前7个数属于z0,后7个数属于z1。

实验代码
include "stdio.h"
#include "stdlib.h"
#include "stdint.h"
#include "math.h"

double PI = 3.1415926;

double Gauss(const double px,const double mu,const doublecsigma)
{
        double val
=sqrt(2*PI*csigma);
        val = 1/val;
        val =val*exp(-pow(px-mu,2)/(2*csigma));
        return val
;
 }

int main(void)
{
       double x[] = {1.5,1.8,1.9,2.0,2.1,2.2,2.5, 
3.0,3.9,3.9,4.0,4.1,4.1,5.0};
       int m = sizeof(x)/sizeof(double);

       const int k = 2;
       double fei[k] ;
       double mean[k] ;
       double mao[k] ;


       doubleprobability_x[][2]={{0.9,0.1},{0.5,0.5},{0.5,0.5},{0.5,0.5},{0.5,0.5},{0.5,0.5},{0.5,0.5},{0.5,0.5},{0.5,0.5},{0.5,0.5},{0.5,0.5},{0.5,0.5},{0.5,0.5},{0.
1,0.9}}; // first make the 1.5 belong to z0 ,wihle 5.0 belongto z1
       bool improve_large = false;
       int step = 0;
       do{
           
  //E-step       
           
  for(intj=0;j<k&&step!=0;++j)
           
  {
           
         for(inti=0;i<m;++i)
           
         {
           
         
     probability_x[i][j] = Gauss(x[i],mean[j],mao[j])*fei[j]/ (Gauss(x[i],mean[0],mao[0])*fei[0]+Gauss(x[i],mean[1],mao[1])*fei[1]
);
           
         }
           
  }
           
  //M-step
           
  for(intj=0;j<k;++j)
           
  {
           
         fei[j] =0.0;
           
         doublesum_prob = 0.0;
           
         for(inti=0;i<m;++i)
           
         {
           
         
     sum_prob += probability_x[i][j];
           
         }
           
         fei[j] =sum_prob / m;
           
  }

           
  for(intj=0;j<k;++j)
           
  {
           
         mean[j] =0.0;
           
         doubleweight = 0.0;
           
         doublesum_prob = 0.0;
           
         for(inti=0;i<m;++i)
           
         {
           
         
     weight += x[i]*probability_x[i][j];
           
         
     sum_prob += probability_x[i][j];
           
         }
           
         mean[j] =weight/sum_prob;
           
  }


           
  for(intj=0;j<k;++j)
           
  {
           
         mao[j] =0.0;
           
         doubleweight = 0.0;
           
         doublesum_prob = 0.0;
           
         for(inti=0;i<m;++i)
           
         {
           
         
     weight +=(x[i]-mean[j])*(x[i]-mean[j])*probability_x[i][j];
           
         
     sum_prob += probability_x[i][j];
           
         }
           
         mao[j] =weight/sum_prob;
           
  }

           
 printf("********************%d*************************\n",step++);
           
 printf("%f,%f,%f\n",fei[0],mean[0],mao[0]);
           
 printf("%f,%f,%f\n",fei[1],mean[1],mao[1]);
           
  for(inti=0;i<m;++i)
           
  {
           
         
     printf("%f\t%f\n",probability_x[i][0],probability_x[i][1]);
           
  }
           
 printf("***********************************************\n");


       }while(!improve_large&& step<100);

       return 0;
}

EM实现的更多相关文章

  1. CSS中强悍的相对单位之em(em-and-elastic-layouts)学习小记

    使用相对单位em注意点 1.浏览器默认字体是16px,即1em = 16px,根元素设置如下 html{ font-size: 100%; /* WinIE text resize correctio ...

  2. 由css reset想到的深入理解margin及em的含义

    由css reset想到的深入理解margin及em的含义 原文地址:http://www.ymblog.net/content_189.html 经常看到这样语句,*{ margin:0px;pad ...

  3. 【十大经典数据挖掘算法】EM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 极大似然 极大似然(Maxim ...

  4. px和em,rem的区别

    1.px是你屏幕设备物理上能显示出的最小的一个点,这个点不是固定宽度的,不同设备上点的长宽.比例有可能会不同.假设:你现在用的显示器上1px宽=1毫米,但我用的显示器1px宽=两毫米,那么你定义一个d ...

  5. 学习笔记——EM算法

    EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求 ...

  6. em与px换算关系以及常用列表

    1.任意浏览器的默认字体大小都是16px.2.所有未经调整的浏览器都符合: 1em=16px 12px=0.75em 10px=0.625em3.为了简化font-size的换算,在body选择器中声 ...

  7. CSS3中的px,em,rem,vh,vw辨析

    1.px:像素,精确显示 2.em:继承父类字体的大小,相当于"倍",如:浏览器默认字体大小为16px=1em,始终按照div继承来的字体大小显示,进场用于移动端 em换算工具:h ...

  8. rem、px、em之间的区别以及网页响应式设计写法

    个人收藏用,转载自:http://www.w3cplus.com/css3/define-font-size-with-css3-rem 在Web中使用什么单位来定义页面的字体大小,至今天为止都还在激 ...

  9. css单位:em,rem解释

    em:所有浏览器都符合:1em=16px;1.具有继承性2.em的根元素是body,当设置了根元素的大小时,大小是定义的数字乘以根元素定义的大小值 rem:1rem=16pxrem不具有继承性,其根元 ...

  10. 关于px、em和rem的学习笔记!

    刚参加前端工作,字体一般使用px来设置大小,在处理响应式界面时对字体的大小变化处理感觉很吃力,得知对字体的大小有三种大小格式设置方式,便想一探究竟,希望可以有所帮助! px px像素(Pixel),相 ...

随机推荐

  1. Selenium Webdriver元素定位的八种常用方法

    如果你只是想快速实现控件抓取,而不急于了解其原理,可直接看: http://blog.csdn.net/kaka1121/article/details/51878346 如果你想学习web端自动化, ...

  2. 一个貌似比较吊的递归转换为loop--总算成功了.--第二弹

    前段时间用类似于散弹式编程的方式,各种猜测-运行验证-修正结果,最终成功转换了一个看起来比较有难度的递归函数.但总觉得很蛋疼,原因如下: 1.虽然正确,但是逻辑搞得比较复杂.现在去看,一头雾水,不知道 ...

  3. Java异常处理-----运行时异常(RuntimeException)

    RuntimeException RunntimeException的子类: ClassCastException 多态中,可以使用Instanceof 判断,进行规避 ArithmeticExcep ...

  4. Linux 高性能服务器编程——IP协议详解

    1 IP服务特点 IP协议是TCP/IP协议族的动力,它为上层协议提供无状态.无连接.不可靠的服务. 无状态:IP通信双方不同步传输数据的状态信息,因此IP数据包的发送.传输和接收都是无序的.     ...

  5. SQLite 删除表(http://www.w3cschool.cc/sqlite/sqlite-drop-table.html)

    SQLite 删除表 SQLite 的 DROP TABLE 语句用来删除表定义及其所有相关数据.索引.触发器.约束和该表的权限规范. 使用此命令时要特别注意,因为一旦一个表被删除,表中所有信息也将永 ...

  6. 【NPR】铅笔画

    写在前面 今天打算写一篇跟Unity基本无关的文章.起因是我上个星期不知怎么的搜到了一个网站 ,里面实现的效果感觉挺好的,后来发现是2012年的NPAR会议的最佳论文.看了下文章,觉得不是很难,就想着 ...

  7. 一套强大的vim配置文件+详细注释

    phpchina折腾王独家配置,灰常牛叉的一套vim配置,另附有详细注释,自己折腾vim的时候可以参照其中的大部分设置进行一些个性化定制."是否兼容VI,compatible为兼容,noco ...

  8. 剑指Offer——Trie树(字典树)

    剑指Offer--Trie树(字典树) Trie树 Trie树,即字典树,又称单词查找树或键树,是一种树形结构,是一种的单词.对于每一个单词,我们要判断他出没出现过,如果出现了,求第一次出现在第几个位 ...

  9. Linux设备驱动编程---miscdevice杂类设备的使用方法

    miscdev简称杂类设备杂类设备就是对字符设备驱动做一个封装,方便简单使用杂类设备封装字符设备需要包含的头文件:#include <linux/miscdevice.h>(1)杂类设备的 ...

  10. UNIX网络编程——非阻塞式I/O(套接字)

    套接字的默认状态是阻塞的.这就意味着当发出一个不能立即完成的套接字调用时,其进程将被投入睡眠,等待相应的操作完成.可能阻塞的套接字调用可分为以下4类: (1)输入操作,包括read,readv,rec ...