Algorithm --> 求阶乘末尾0的个数
求阶乘末尾0的个数
(1)给定一个整数N,那么N的阶乘N!末尾有多少个0?比如:N=10,N!=3628800,N!的末尾有2个0。
(2)求N!的二进制表示中最低位为1的位置。
第一题
考虑哪些数相乘能得到10,N!= K * 10M其中K不能被10整除,则N!末尾有M个0。
对N!进行质因数分解: N!=2X*3Y*5Z…,因为10=2*5,所以M与2和5的个数即X、Z有关。每一对2和5都可以得到10,故M=min(X,Z)。因为能被2整除的数出现的频率要比能被5整除的数出现的频率高,所以M=Z。
解法1:问题转化为求N!因式分解中5的指数。
int countZero(int N)
{
int ret = ;
int j;
for(int i=; i<=N; i++)
{
j = i;
while(==j%)
{
ret++;
j /= ;
}
}
return ret;
}
改进不要从1开始循环的,只有5的倍数才能够被5整除
int numOfZero(int n)
{
int num = , i, temp;
for(i=; i<=n; i+=)
{
temp = i;
while( == temp%)
{
temp /= ;
num++;
}
}
return num;
}
解法2:Z =[N/5] + [N/52] + [N/53] + …
[N/5] 表示不大于N的的数中5的倍数贡献一个5, [N/52] 表示不大于N的数中52的倍数在贡献一个5……
int countZero(int N)
{
int ret = ;
while(N)
{
ret += N/;
N /= ;
}
return ret;
}
或者
int numOfZero(int n)
{
int num = , i;
for(i=; i<=n; i*=)
{
num += n/i;
}
return num;
}
第二题
把一个二进制除以2的过程如下:
判断最后一个二进制是否为0:若为0将二进制数右移1位,即为商;若为1,则说明这个数是奇数,不能被2整除。
所以判断N!的二进制表示中最低位为1的位置的问题可以转换为求N!中含有质因数2的个数的问题。即位置为N!含有质因数2的个数加1.
解法1:N!中含有质因数2的个数等于:[N/2]+[N/4]+[N/8]+…
int lowestOne(int N)
{
int ret = ;
while(N)
{
N >>= ;
ret += N;
}
return ret;
}
解法2:N!中含有质因数2的个数等于N减去N的二进制表示中1的数目。
以下为规律的推导:N!中含有2的质因数的个数等于[N/2]+[N/4]+[N/8]+…
对于11011即:
1101+110+11+1 = (1000+100+1) + (100+10) + (10+1) + 1
= 1000+100+10+1 + 100+10+1 + 1
= 1111+111+1
= 10000-1 + 1000-1 + 10-1 + 1-1
= 11011-(N的二进制表示中含有1的个数)
Algorithm --> 求阶乘末尾0的个数的更多相关文章
- [LeetCode] Factorial Trailing Zeroes 求阶乘末尾零的个数
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...
- [LeetCode] 172. Factorial Trailing Zeroes 求阶乘末尾零的个数
Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explan ...
- N的阶乘末尾0的个数和其二进制表示中最后位1的位置
问题一解法: 我们知道求N的阶乘结果末尾0的个数也就是说我们在从1做到N的乘法的时候里面产生了多少个10, 我们可以这样分解,也就是将从0到N的数分解成因式,再将这些因式相乘,那么里面有多少个 ...
- Java 计算N阶乘末尾0的个数-LeetCode 172 Factorial Trailing Zeroes
题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in ...
- LightOj 1138 - Trailing Zeroes (III) 阶乘末尾0的个数 & 二分
题目链接:http://lightoj.com/volume_showproblem.php?problem=1138 题意:给你一个数n,然后找个一个最小的数x,使得x!的末尾有n个0:如果没有输出 ...
- 求n!末尾0的个数
题目连接 /* £:离散数学. £:n!中2的个数>5的个数. £:2*5=10: */ #include<cstdio> #include<cstring> #incl ...
- [CareerCup] 17.3 Factorial Trailing Zeros 求阶乘末尾零的个数
LeetCode上的原题,讲解请参见我之前的博客Factorial Trailing Zeroes. 解法一: int trailing_zeros(int n) { ; while (n) { re ...
- 求N的阶乘N!中末尾0的个数
求N的阶乘N!中末尾0的个数 有道问题是这样的:给定一个正整数N,那么N的阶乘N!末尾中有多少个0呢?例如:N=10,N=3628800,则N!的末尾有两个0:直接上干货,算法思想如下:对于任意一个正 ...
- POJ 1401:Factorial 求一个数阶乘的末尾0的个数
Factorial Time Limit: 1500MS Memory Limit: 65536K Total Submissions: 15137 Accepted: 9349 Descri ...
随机推荐
- CWnd *和HWnd转换
CWnd *和HWnd转换 CWnd*得到HWnd CWnd wnd; HWND hWnd; hWnd = wnd.m_hWnd; // or ...
- Android内核解读-应用的安装过程
前言 我们知道,在android手机上安装一个apk很简单,只要打开apk文件,默认就会弹出安装界面,然后点击确定,经过若干秒后,apk就安装成功了,可是你知道apk的安装过程是什么吗?你知道andr ...
- php和java中的加密和解密
遇到的java代码如下: Cipher cipher=Cipher.getInstance("DESede/CBC/PKCS5Padding"); 在php中使用des算法 始终校 ...
- php session 和cookie
先简单的说明下session和cookie的区别. 1.session存放在服务器的文件中,或者是内存中.而cookie存在客服端. 2.session比cookie安全 3.session存放在服务 ...
- hql查询实例
1.设计思路 (1)在页面中设计一个下拉框,数据取自数据库: (2)查询是用hql查询. 2.设计实例 (1)Java模型层 public class Tree { private String id ...
- Servlet.service() for Servlet jsp threw exception javax.servlet.ServletException:File "/pageFoo
1.错误描述 Servlet.service() for Servlet jsp threw exception javax.servlet.ServletException:File "/ ...
- Filter的注册2
既然Filter是一种COM组件,使用前就必须先注册.Filter的注册程序为regsvr32.exe (位于操作系统目录的system32子目录下).假设现在有一个Filter文件,它的完整路径为C ...
- SecurityError:Error #2048:安全沙箱冲突
1.错误描述 SecurityError:Error #2048:安全沙箱冲突:http://localhost:8080/YHD/flash/YHD.swf 不能从 http://123.89.45 ...
- C#数据缓存介绍及Caching通用帮助类整理
C#缓存主要是为了提高数据的读取速度.因为服务器和应用客户端之间存在着流量的瓶颈,所以读取大容量数据时,使用缓存来直接为客户端服务,可以减少客户端与服务器端的数据交互,从而大大提高程序的性能. 以下为 ...
- 芝麻HTTP:
只要你的Scrapy Field字段名字和 数据库字段的名字 一样.那么恭喜你你就可以拷贝这段SQL拼接脚本.进行MySQL入库处理. 具体拼接代码如下: def process_item(self, ...