Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.

Example:

nums = [1, 2, 3]
target = 4 The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.

Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?

Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.

这道题是组合之和系列的第四道,博主开始想当然的以为还是用递归来解,结果写出来发现 TLE 了,的确 OJ 给了一个 test case 为 [4,1,2] 32,这个结果是 39882198,用递归需要好几秒的运算时间,实在是不高效,估计这也是为啥只让返回一个总和,而不是返回所有情况,不然机子就爆了。而这道题的真正解法应该是用 DP 来做,解题思想有点像之前爬梯子的那道题 Climbing Stairs,这里需要一个一维数组 dp,其中 dp[i] 表示目标数为i的解的个数,然后从1遍历到 target,对于每一个数i,遍历 nums 数组,如果 i>=x, dp[i] += dp[i - x]。这个也很好理解,比如说对于 [1,2,3] 4,这个例子,当计算 dp[3] 的时候,3可以拆分为 1+x,而x即为 dp[2],3也可以拆分为 2+x,此时x为 dp[1],3同样可以拆为 3+x,此时x为 dp[0],把所有的情况加起来就是组成3的所有情况了,参见代码如下:

解法一:

class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + );
dp[] = ;
for (int i = ; i <= target; ++i) {
for (auto a : nums) {
if (i >= a) dp[i] += dp[i - a];
}
}
return dp.back();
}
};

如果 target 远大于 nums 数组的个数的话,上面的算法可以做适当的优化,先给 nums 数组排个序,然后从1遍历到 target,对于i小于数组中的数字x时,直接 break 掉,因为后面的数更大,其余地方不变,参见代码如下:

解法二:

class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + );
dp[] = ;
sort(nums.begin(), nums.end());
for (int i = ; i <= target; ++i) {
for (auto a : nums) {
if (i < a) break;
dp[i] += dp[i - a];
}
}
return dp.back();
}
};

我们也可以使用递归+记忆数组的形式,不过这里的记忆数组用的是一个 HashMap。在递归函数中,首先判断若 target 小于0,直接返回0,若 target 等于0,则返回1。若当前 target 已经在 memo 中存在了,直接返回 memo 中的值。然后遍历 nums 中的所有数字,对每个数字都调用递归,不过此时的 target 要换成 target-nums[i],然后将返回值累加到结果 res 中即可,参见代码如下:

解法三:

class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
unordered_map<int, int> memo;
return helper(nums, target, memo);
}
int helper(vector<int>& nums, int target, unordered_map<int, int>& memo) {
if (target < ) return ;
if (target == ) return ;
if (memo.count(target)) return memo[target];
int res = , n = nums.size();
for (int i = ; i < n; ++i) {
res += helper(nums, target - nums[i], memo);
}
return memo[target] = res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/377

类似题目:

Combination Sum

Combination Sum II

Combination Sum III

参考资料:

https://leetcode.com/problems/combination-sum-iv/

https://leetcode.com/problems/combination-sum-iv/discuss/85079/My-3ms-Java-DP-solution

https://leetcode.com/problems/combination-sum-iv/discuss/85036/1ms-Java-DP-Solution-with-Detailed-Explanation

https://leetcode.com/problems/combination-sum-iv/discuss/85120/C%2B%2B-template-for-ALL-Combination-Problem-Set

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Combination Sum IV 组合之和之四的更多相关文章

  1. [LeetCode] 377. Combination Sum IV 组合之和之四

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  2. [LeetCode] 377. Combination Sum IV 组合之和 IV

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  3. [LeetCode] Combination Sum III 组合之和之三

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  4. [LeetCode] Combination Sum II 组合之和之二

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...

  5. [Leetcode] combination sum ii 组合之和

    Given a collection of candidate numbers ( C ) and a target number ( T), find all unique combinations ...

  6. 377 Combination Sum IV 组合之和 IV

    Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...

  7. [LeetCode] 216. Combination Sum III 组合之和 III

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  8. [leetcode]40. Combination Sum II组合之和之二

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

  9. [LeetCode] 40. Combination Sum II 组合之和 II

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

随机推荐

  1. 读书笔记--SQL必知必会05--高级数据过滤

    5.1 组合使用WHERE子句 操作符(operator)也称为逻辑操作符(logical operator),用来联结或改变WHERE子句中的过滤条件. 5.1.1 AND操作符 在WHERE子句中 ...

  2. C#的扩展方法解析

    在使用面向对象的语言进行项目开发的过程中,较多的会使用到“继承”的特性,但是并非所有的场景都适合使用“继承”特性,在设计模式的一些基本原则中也有较多的提到. 继承的有关特性的使用所带来的问题:对象的继 ...

  3. 微服务(Microservices)—Martin Fowler【翻译】

    本文转载自:http://www.cnblogs.com/liuning8023/p/4493156.html -------------------------------------------- ...

  4. 和Java相关的书籍,想成为架构师的请收藏一下啊

    1.<<Effective Java 中文第二版>> 2.<<Java并发编程实践>> 3.<<Java核心技术(原书第8版)卷I_基础知识 ...

  5. jQuery版AJAX简易封装

    开发过程中,AJAX的应用应该说非常频繁,当然,jQuery的AJAX函数已经非常好用,但是小编还是稍微整理下,方便不同需求下,可以简化输入参数,下面是实例代码: $(function(){ /** ...

  6. GJM : Unity3D HIAR -【 快速入门 】 四、创建 Hello World

    创建 Hello World 本文将介绍如何在 Windows 系统下,使用 HiAR SDK 创建一个简单的 AR 应用.在开始之前,请先完成下列准备工作: 注册 HiAR 帐户 获取 AppKey ...

  7. cmd命令汇总

    一  cmd 命令 cmd命令大全(第一部分) winver---------检查Windows版本 wmimgmt.msc----打开windows管理体系结构(WMI) wupdmgr------ ...

  8. JQ的表单验证

    (function () { $("#but").click(function () { if ($("#name").val() == "" ...

  9. 3.3 js函数

    1.函数语法: 函数声明的方式:function 函数名(参数1,参数2-){//函数体;}函数调用:函数名(参数1,参数2-); 函数内不一定都指定返回值. 如果需要指定返回值,可用 return ...

  10. Javascript9张思维导图

    1.变量 2.运算符 3.数组 4.流程语句 5.字符串函数 6.函数基础 7.DOM操作 8.BOM 9.正则表达式