图之单源Dijkstra算法、带负权值最短路径算法
1、图类基本组成
存储在邻接表中的基本项
/**
* Represents an edge in the graph
*
*/
class Edge implements Comparable<Edge> {
public Vertex dest; //Second vertex in Edge
public double cost; //Edge cost public Edge(Vertex d, double c) {
dest = d;
cost = c;
} @Override
public int compareTo(Edge o) {
double otherCost = o.cost;
return cost < otherCost ? -1 : cost > otherCost ? 1 : 0;
} @Override
public String toString() {
return "Edge{" + "dest=" + dest + ", cost=" + cost + '}';
}
}
存储每个顶点信息
/**
* Represents a vertex in the graph
*/
class Vertex {
public String name;
public List<Edge> adj;//Adjacent vertices
public double dist;
public Vertex prev;
public int scratch;//Extra variable used in algorithm public Vertex(String name) {
this.name = name;
adj = new LinkedList<Edge>();
reset();
} public void reset() {
dist = Graph.INFINITY;
prev = null;
scratch = 0;
} @Override
public String toString() {
return "Vertex{" + "name='" + name + '\'' + ", prev=" + prev + ", adj=" + adj + ", dist=" + dist + '}';
}
}
图类的框架
import java.util.*; /**
* Created by Vanguard on 2017/4/6.
*/
public class Graph {
public static final double INFINITY = Double.MAX_VALUE;
private Map<String, Vertex> vertexMap = new HashMap<String, Vertex>(); public void addEdge(String sourceName, String destName, double cost) {
Vertex v = getVertex(sourceName);
Vertex w = getVertex(destName);
v.adj.add(new Edge(w, cost));
} /**
* 通过查询图的表,打印最短路径
*
* @param destName
*/
public void printPath(String destName) {
Vertex w = vertexMap.get(destName);
if (w == null) {
System.out.println("NoSuchElementException");
return;
} else if (w.dist == INFINITY) {
System.out.println(destName + " is unreachable.");
} else {
System.out.print("(Cost is: " + w.dist + ") ");
printPath(w);
System.out.println();
}
} private void printPath(Vertex dest) {
if (dest.prev != null) {
printPath(dest.prev);
System.out.print(" --> ");
}
System.out.print(dest.name);
} private Vertex getVertex(String vertexName) {
Vertex v = vertexMap.get(vertexName);
if (v == null) { //create if not exist.
v = new Vertex(vertexName);
vertexMap.put(vertexName, v);
}
return v;
} private void clearAll() {
for (Vertex v : vertexMap.values()) {
v.reset();
}
}
}
2、最短路径算法
广度优先搜索
/**
* Single-source unweighted shortest-path algorithm.
* 无权单源最短路径算法——广度优先搜索
*
* @param startName
*/
public void unweighted(String startName) {
clearAll();
Vertex start = vertexMap.get(startName);
if (start == null) {
throw new NoSuchElementException("Start vertex not fond.");
}
Queue<Vertex> q = new LinkedList<Vertex>();
q.add(start);
start.dist = 0;
while (!q.isEmpty()) {
Vertex v = q.remove();
for (Edge e : v.adj) {
Vertex w = e.dest;
if (w.dist == INFINITY) {
w.dist = v.dist + 1;
w.prev = v;
q.add(w);
}
}
}
}
Dijstra算法
/**
* Single-source unweighted shortest-path algorithm.
* 无权单源最短路径算法——广度优先搜索
*
* @param startName
*/
public void unweighted(String startName) {
clearAll();
Vertex start = vertexMap.get(startName);
if (start == null) {
throw new NoSuchElementException("Start vertex not fond.");
}
Queue<Vertex> q = new LinkedList<Vertex>();
q.add(start);
start.dist = 0;
while (!q.isEmpty()) {
Vertex v = q.remove();
for (Edge e : v.adj) {
Vertex w = e.dest;
if (w.dist == INFINITY) {
w.dist = v.dist + 1;
w.prev = v;
q.add(w);
}
}
}
}
带负权值得最短路径算法
/**
* Single-source negative-weighted shortest-path algorithm.
* 带负权值得最短路径算法
*
* @param startName
*/
public void negative(String startName) {
clearAll(); Vertex start = vertexMap.get(startName);
if (start == null) {
throw new NoSuchElementException("Start vertex not fond.");
}
Queue<Vertex> q = new LinkedList<>();
q.add(start);
start.dist = 0;
start.scratch++;
while (!q.isEmpty()) {
Vertex v = q.remove();
if (v.scratch++ > 2 * vertexMap.size()) {
System.out.println("Negative cycle detected.");
}
for (Edge e : v.adj) {
Vertex w = e.dest;
double costvw = e.cost;
if (w.dist > v.dist + costvw) {
w.dist = v.dist + costvw;
w.prev = v;
//Enqueue only if not already on the queue
if (w.scratch++ % 2 == 0)
q.add(w);
else
w.scratch--;
}
} }
}
THE END.
图之单源Dijkstra算法、带负权值最短路径算法的更多相关文章
- Expm 10_1 带负权值边的有向图中的最短路径问题
[问题描述] 对于一个带负权值边的有向图,实现Bellman-Ford算法,求出从指定顶点s到其余顶点的最短路径,并判断图中是否存在负环. package org.xiu68.exp.exp10; p ...
- 非负权值有向图上的单源最短路径算法之Dijkstra算法
问题的提法是:给定一个没有负权值的有向图和其中一个点src作为源点(source),求从点src到其余个点的最短路径及路径长度.求解该问题的算法一般为Dijkstra算法. 假设图顶点个数为n,则针对 ...
- Wormholes 最短路判断有无负权值
Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...
- poj 3259 Wormholes 判断负权值回路
Wormholes Time Limit: 2000 MS Memory Limit: 65536 KB 64-bit integer IO format: %I64d , %I64u Java ...
- SPFA 最短路 带负权边的---- 粗了解
SPFA(Shortest Path Faster Algorithm)是Bellman-Ford算法的一种队列实现,减少了不必要的冗余计算. 算法大致流程是用一个队列来进行维护. 初始时将源加入队列 ...
- Bellman-Ford算法——解决负权边
Dijkstra算法虽然好,但是它不能解决带有负权边(边的权值为负数)的图. 接下来学习一种无论在思想上还是在代码实现上都可以称为完美的最短路径算法:Bellman-Ford算法. Bellman-F ...
- POJ-2195 Going Home---KM算法求最小权值匹配(存负边)
题目链接: https://vjudge.net/problem/POJ-2195 题目大意: 给定一个N*M的地图,地图上有若干个man和house,且man与house的数量一致.man每移动一格 ...
- 分布式技术专题-分布式协议算法-带你彻底认识Paxos算法、Zab协议和Raft协议的原理和本质
内容简介指南 Paxo算法指南 Zab算法指南 Raft算法指南 Paxo算法指南 Paxos算法的背景 [Paxos算法]是莱斯利·兰伯特(Leslie Lamport)1990年提出的一种基于消息 ...
- 理解KNN算法中的k值-knn算法中的k到底指的是什么 ?
2019-11-09 20:11:26为方便自己收藏学习,转载博文from:https://blog.csdn.net/llhwx/article/details/102652798 knn算法是指对 ...
随机推荐
- Activiti中的log4j(slf4j)的配置
今天试了一下在Activiti中使用log4j来进行配置发现这个会出现问题,其实Activiti中的日志系统是采用的是slf4j而不是log4j 然后使用slf4j驱动log4j来做的 通过Proce ...
- CentOS7上安装并配置Nginx、PHP、MySql
一.Nginx 1.安装nginx yum install nginx 2.启动nginx systemctl start nginx 除了systemctl start nginx之外,常用的相关命 ...
- 高通ASOC中的codec驱动
ASOC的出现是为了让codec独立于CPU,减少和CPU之间的耦合,这样同一个codec驱动就无需修改就可以匹配任何一款平台. 在Machine中已经知道,snd_soc_dai_link结构就指明 ...
- SIFT解析(一)建立高斯金字塔
SIFT(Scale-Invariant Feature Transform,尺度不变特征转换)在目标识别.图像配准领域具有广泛的应用,下面按照SIFT特征的算法流程对其进行简要介绍对SIFT特征做简 ...
- python 下划线--完美解释
Python 用下划线作为变量前缀和后缀指定特殊变量 _xxx 不能用'from module import *'导入 __xxx__ 系统定义名字 __xxx 类中的私有变量名 核心风格:避免用下划 ...
- Linux socket网络编程基础 tcp和udp
Socket TCP网络通信编程 首先,服务器端需要做以下准备工作: (1)调用socket()函数.建立socket对象,指定通信协议. (2)调用bind()函数.将创建的socket对象与当前主 ...
- Spark第一个应用程序
首先要对源码进行编译,生成对应hadoop版本的spark开发程序jar包,上篇已经写了具体的过程,这里不再赘述. 在安装spark的机器上,下载eclipse-java-x86_64版本,将spar ...
- mysql数据库 索引 事务和事务回滚
mysql索引 索引相当于书的目录优点:加快数据的查询速度缺点:占物理存储空间,添加,删除,会减慢写的速度 查看表使用的索引 mysql> show index from 表名\G;(\G分行显 ...
- 多文件工程的编译-Makefile的简便写法
通常我们在命令行使用GCC对程序进行编译,如果对于单个或者几个文件时比较方便的,但当工程中的文件逐渐增多甚至变得十分庞大的时候,使用GCC显然力不从心,不好管理.因此我们有必要编写一个Makefile ...
- 关于Maven的web项目的创建
网上关于Maven的web项目创建多种多样,先本人在研究Maven之余,创建一套自己试过并有效的创建步骤. 1.点击右键>选择Maven Project,如下图所示: 2.点击创建,如下图所示: ...