1、图类基本组成

存储在邻接表中的基本项

 /**
* Represents an edge in the graph
*
*/
class Edge implements Comparable<Edge> {
public Vertex dest;  //Second vertex in Edge
public double cost;  //Edge cost public Edge(Vertex d, double c) {
dest = d;
cost = c;
} @Override
public int compareTo(Edge o) {
double otherCost = o.cost;
return cost < otherCost ? -1 : cost > otherCost ? 1 : 0;
} @Override
public String toString() {
return "Edge{" + "dest=" + dest + ", cost=" + cost + '}';
}
}

存储每个顶点信息

 /**
* Represents a vertex in the graph
*/
class Vertex {
public String name;
public List<Edge> adj;//Adjacent vertices
public double dist;
public Vertex prev;
public int scratch;//Extra variable used in algorithm public Vertex(String name) {
this.name = name;
adj = new LinkedList<Edge>();
reset();
} public void reset() {
dist = Graph.INFINITY;
prev = null;
scratch = 0;
} @Override
public String toString() {
return "Vertex{" + "name='" + name + '\'' + ", prev=" + prev + ", adj=" + adj + ", dist=" + dist + '}';
}
}

图类的框架

 import java.util.*;

 /**
* Created by Vanguard on 2017/4/6.
*/
public class Graph {
public static final double INFINITY = Double.MAX_VALUE;
private Map<String, Vertex> vertexMap = new HashMap<String, Vertex>(); public void addEdge(String sourceName, String destName, double cost) {
Vertex v = getVertex(sourceName);
Vertex w = getVertex(destName);
v.adj.add(new Edge(w, cost));
} /**
* 通过查询图的表,打印最短路径
*
* @param destName
*/
public void printPath(String destName) {
Vertex w = vertexMap.get(destName);
if (w == null) {
System.out.println("NoSuchElementException");
return;
} else if (w.dist == INFINITY) {
System.out.println(destName + " is unreachable.");
} else {
System.out.print("(Cost is: " + w.dist + ") ");
printPath(w);
System.out.println();
}
} private void printPath(Vertex dest) {
if (dest.prev != null) {
printPath(dest.prev);
System.out.print(" --> ");
}
System.out.print(dest.name);
} private Vertex getVertex(String vertexName) {
Vertex v = vertexMap.get(vertexName);
if (v == null) { //create if not exist.
v = new Vertex(vertexName);
vertexMap.put(vertexName, v);
}
return v;
} private void clearAll() {
for (Vertex v : vertexMap.values()) {
v.reset();
}
}
}

2、最短路径算法

广度优先搜索

 /**
* Single-source unweighted shortest-path algorithm.
* 无权单源最短路径算法——广度优先搜索
*
* @param startName
*/
public void unweighted(String startName) {
clearAll();
Vertex start = vertexMap.get(startName);
if (start == null) {
throw new NoSuchElementException("Start vertex not fond.");
}
Queue<Vertex> q = new LinkedList<Vertex>();
q.add(start);
start.dist = 0;
while (!q.isEmpty()) {
Vertex v = q.remove();
for (Edge e : v.adj) {
Vertex w = e.dest;
if (w.dist == INFINITY) {
w.dist = v.dist + 1;
w.prev = v;
q.add(w);
}
}
}
}

Dijstra算法

 /**
* Single-source unweighted shortest-path algorithm.
* 无权单源最短路径算法——广度优先搜索
*
* @param startName
*/
public void unweighted(String startName) {
clearAll();
Vertex start = vertexMap.get(startName);
if (start == null) {
throw new NoSuchElementException("Start vertex not fond.");
}
Queue<Vertex> q = new LinkedList<Vertex>();
q.add(start);
start.dist = 0;
while (!q.isEmpty()) {
Vertex v = q.remove();
for (Edge e : v.adj) {
Vertex w = e.dest;
if (w.dist == INFINITY) {
w.dist = v.dist + 1;
w.prev = v;
q.add(w);
}
}
}
}

带负权值得最短路径算法

 /**
* Single-source negative-weighted shortest-path algorithm.
* 带负权值得最短路径算法
*
* @param startName
*/
public void negative(String startName) {
clearAll(); Vertex start = vertexMap.get(startName);
if (start == null) {
throw new NoSuchElementException("Start vertex not fond.");
}
Queue<Vertex> q = new LinkedList<>();
q.add(start);
start.dist = 0;
start.scratch++;
while (!q.isEmpty()) {
Vertex v = q.remove();
if (v.scratch++ > 2 * vertexMap.size()) {
System.out.println("Negative cycle detected.");
}
for (Edge e : v.adj) {
Vertex w = e.dest;
double costvw = e.cost;
if (w.dist > v.dist + costvw) {
w.dist = v.dist + costvw;
w.prev = v;
//Enqueue only if not already on the queue
if (w.scratch++ % 2 == 0)
q.add(w);
else
w.scratch--;
}
} }
}

THE END.

图之单源Dijkstra算法、带负权值最短路径算法的更多相关文章

  1. Expm 10_1 带负权值边的有向图中的最短路径问题

    [问题描述] 对于一个带负权值边的有向图,实现Bellman-Ford算法,求出从指定顶点s到其余顶点的最短路径,并判断图中是否存在负环. package org.xiu68.exp.exp10; p ...

  2. 非负权值有向图上的单源最短路径算法之Dijkstra算法

    问题的提法是:给定一个没有负权值的有向图和其中一个点src作为源点(source),求从点src到其余个点的最短路径及路径长度.求解该问题的算法一般为Dijkstra算法. 假设图顶点个数为n,则针对 ...

  3. Wormholes 最短路判断有无负权值

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  4. poj 3259 Wormholes 判断负权值回路

    Wormholes Time Limit: 2000 MS Memory Limit: 65536 KB 64-bit integer IO format: %I64d , %I64u   Java ...

  5. SPFA 最短路 带负权边的---- 粗了解

    SPFA(Shortest Path Faster Algorithm)是Bellman-Ford算法的一种队列实现,减少了不必要的冗余计算. 算法大致流程是用一个队列来进行维护. 初始时将源加入队列 ...

  6. Bellman-Ford算法——解决负权边

    Dijkstra算法虽然好,但是它不能解决带有负权边(边的权值为负数)的图. 接下来学习一种无论在思想上还是在代码实现上都可以称为完美的最短路径算法:Bellman-Ford算法. Bellman-F ...

  7. POJ-2195 Going Home---KM算法求最小权值匹配(存负边)

    题目链接: https://vjudge.net/problem/POJ-2195 题目大意: 给定一个N*M的地图,地图上有若干个man和house,且man与house的数量一致.man每移动一格 ...

  8. 分布式技术专题-分布式协议算法-带你彻底认识Paxos算法、Zab协议和Raft协议的原理和本质

    内容简介指南 Paxo算法指南 Zab算法指南 Raft算法指南 Paxo算法指南 Paxos算法的背景 [Paxos算法]是莱斯利·兰伯特(Leslie Lamport)1990年提出的一种基于消息 ...

  9. 理解KNN算法中的k值-knn算法中的k到底指的是什么 ?

    2019-11-09 20:11:26为方便自己收藏学习,转载博文from:https://blog.csdn.net/llhwx/article/details/102652798 knn算法是指对 ...

随机推荐

  1. composer安装出现proc_open没有开启问题的解决方案

    今天在安装下载项目的时候,使用composer来安装依赖.遇到了 The Process class relies on proc_open, which is not available on yo ...

  2. php的内置函数debug_backtrace()与get_included_files()跟踪代码调用(Thinkphp框架举例)

    debug_backtrace() 在我们开发一个项目中,或者二开研究某个开源程序,需要对代码流程一步步去跟踪,来研究它的逻辑,才可以进行修改,达到我们的开发目的.php的内置函数debug_back ...

  3. PHP动态编译出现Cannot find autoconf的解决方法

    wget http://ftp.gnu.org/gnu/m4/m4-1.4.9.tar.gz tar -zvxf m4-.tar.gz cd m4-/ ./configure && m ...

  4. Oauth认证协议

    原文地址腾讯QQ第三方登录的实现原理? Oauth当中的角色: 1.Service Provider(服务提供方): 服务提供方通常是网站,在这些网站当中存储着一些受限制的资源,如照片.视频.联系人列 ...

  5. 《android开发艺术探索》读书笔记(五)--RemoteViews

    接上篇<android开发艺术探索>读书笔记(四)--View工作原理 No1: RemoteViews使用场景:通知栏和桌面小部件 No2: 通知栏主要通过NotificationMan ...

  6. python爬虫之基本知识

    随着数据的海量增长,我们需要在互联网上选取所需要的数据进行自己研究的分析和实验.这就用到了爬虫这一技术,下面就跟着小编一起初遇python爬虫! 一.请求-响应 在利用python语言实现爬虫时,主要 ...

  7. Quartz基本使用

    1.Quartz概述:简单的说就是java的一个定时任务的框架,没有那么复杂的解释,跟前端的定时器一样.在了解它之前,首先熟悉几个概念. 2.基本概念 2.1 Job:表示一个工作,要执行的具体内容. ...

  8. webpack打包速度和性能再次优化

    一. 改单dll为双dll 因为上图原因,使用CommonsChunkPlugin时,导致其打包出来的vendors.js内的模块ID会因为其他文件引用模块数量的变化而变化. 所以现利用DllPlug ...

  9. java中的mvc和三层结构究竟是什么关系

    一件事,要知其然往往很简单,要知其所以然通常不是那么容易,就如最近重新巩固spring的过程中,就觉得还有许多问题其实并不是十分明了. 屈指一算,手头上做过的正式项目也有了四五六七个了,不管用的数据库 ...

  10. Extjs 4.0 Window

    1.JSON代码 Ext.MyWindow=Ext.extend(Ext.Window ,{ xtype:"window", title:"我的窗口", wid ...