3930: [CQOI2015]选数

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 1383  Solved: 669
[Submit][Status][Discuss]

Description

我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案。小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究。然而他很快发现工作量太大了,于是向你寻求帮助。你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个。由于方案数较大,你只需要输出其除以1000000007的余数即可。

 

Input

输入一行,包含4个空格分开的正整数,依次为N,K,L和H。

 

Output

输出一个整数,为所求方案数。

 

Sample Input

2 2 2 4

Sample Output

3

HINT

样例解释

所有可能的选择方案:(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)
其中最大公约数等于2的只有3组:(2, 2), (2, 4), (4, 2)
对于100%的数据,1≤N,K≤10^9,1≤L≤H≤10^9,H-L≤10^5
 

容斥
可以注意到一个性质:任意选两个数,这两个数的gcd<=他们的差 易证
题目中给出的区间大小<=1e5 所以不管怎么选,只要不全部选相同的数,gcd都会<=1e5
设f[i]为所有数的gcd为k或k的倍数的方案,易算出f[i]
假设g[i]为gcd为所有数的gcd为k的方案,可以用f[]容斥得到g[]
因为首先保证了所有方案不能选择相同的数,所以最后特判一下能不能全部选择K这个数来贡献答案

顺便%%用反演的大佬

 #include<bits/stdc++.h>
#define ll long long
#define mod 1000000007
#define N 100001
using namespace std;
int M,K,L,R,fg,f[N];
int quick(int a,int b){
int ret=;
while(b){
if(b&)ret=1ll*ret*a%mod;
a=1ll*a*a%mod;b>>=;
}
return ret;
}
int main(){
scanf("%d%d%d%d",&M,&K,&L,&R);fg= K<=R&&K>=L;
for(int i=R-L+;i>=;--i){
int l=L/i-(L%i==),r=R/i,t=r-l;
int sum=quick(t,M)-t;
sum<?sum+=mod:;f[i]=sum;
for(int j=i+i;j<=R-L+;j+=i)
f[i]=(f[i]-f[j]+mod)%mod;
}
f[K]=(f[K]+fg)%mod;f[K]<?f[K]+=mod:;
printf("%d",f[K]);
return ;
}

bzoj3930[CQOI2015]选数 容斥原理的更多相关文章

  1. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  2. BZOJ3930 [CQOI2015]选数 【容斥】

    题目 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研 ...

  3. BZOJ3930 [CQOI2015]选数【莫比乌斯反演】

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  4. 【bzoj3930】选数 容斥原理+暴力

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  5. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  6. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

  7. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  8. 【BZOJ3930】选数(莫比乌斯反演,杜教筛)

    [BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首 ...

  9. 【BZOJ3930】选数

    [BZOJ3930]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选 ...

随机推荐

  1. 在linux中关闭防火墙

    1) 重启后生效 开启: chkconfig iptables on 关闭: chkconfig iptables off 2) 即时生效,重启后失效 开启: service iptables sta ...

  2. 201421123042 《Java程序设计》第4周学习总结

    1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 继承中的关键词:Soper,object,override,project, 1.2 尝试使用思维导图将这些关键词组织起来.注: ...

  3. CISCO路由器练习

    前言: 总结了昨天的学习和今天的单臂路由 写了今天的文章. 目录: 路由器的基本配置 单臂路由的练习 正文: 路由器基本配置 环境要求 cisco模拟器 2台交换机 2台PC 1台路由器 路由器介绍: ...

  4. httpClient解决post请求重定向的问题

    import com.dadi.saas.util.HTTPUtils; import org.apache.commons.httpclient.Header; import org.apache. ...

  5. hadoop2.6.0实践:003 检查hadoop是否可用

    start-dfs.sh start-yarn.sh 1.检查hdfs hdfs dfs -ls / http://localhost:50070 2.运行例子程序 hdfs dfs -ls / hd ...

  6. 利用JavaScript去掉数组中重复项

    利用JavaScript的object的特性,我们可以非常容易的实现将一个数组的重复项去掉. object的特性是:key一定是唯一的. 把数组重复项去掉: 1 将数组转换成一个object对象,数组 ...

  7. 【已解决】React中配置Sass引入.scss文件无效

    React中配置Sass引入.scss文件无效 在react中使用sass时,引入.scss文件失效 尝试很多方法没法解决,最终找到解决方法,希望能帮助正在坑里挣扎的筒子~ 在node_modules ...

  8. FPGA与MATLAB数据交互高效率验证算法——仿真阶段

    之前博文是对基本设计技巧的总结和一些小设计随笔,内容有点杂,缺乏目的性.本来后续计划设计几个小项目,但导师的任务比较紧,所以为了提高效率,后续博客会涉及到很多算法方面的设计与验证的内容,主要关于OFD ...

  9. UVA-562 Dividing coins---01背包+平分钱币

    题目链接: https://vjudge.net/problem/UVA-562 题目大意: 给定n个硬币,要求将这些硬币平分以使两个人获得的钱尽量多,求两个人分到的钱最小差值 思路: 它所给出的n个 ...

  10. Docker 基础技术之 Linux namespace 源码分析

    上篇我们从进程 clone 的角度,结合代码简单分析了 Linux 提供的 6 种 namespace,本篇从源码上进一步分析 Linux namespace,让你对 Docker namespace ...