有一个长为L的狭窄通道,我们假设这个通道在x轴上,其两个出口分别在x=0与x=L处。在这个通道里有N只狼,第i只狼有一个初始位置ai,它想到达位置bi(0<=i<N)。但是这个通道太狭窄了不能允许两只狼相互交换位置他们的位置,因此如果两只狼需要交换它们的位置他们需要同时离开这个通道到x=0或x=L处在那里重新安排进通道的顺序。在x<=0与x>=L处空间足够大可以装下任意数量的狼。那么所有的狼想从ai到bi它们总共最少走多远的距离,输出这个距离。

注意:在x<=0和x>=L的通道外部空间中移动的距离不计算在内;另外,x=0到x=L只能通过通道连通,即通道外面的世界不能从x=0走到x=L处。

解题报告:

用时:2h,2WA

这题一开始想到按照起点排序,然后枚举一个断点,断点左边先全走到0(称之为左集合),右边((称为右集合)先全都走到L,然后问题来了,拍的时候发现有时候到终点的顺序还需要调整,也就是说还有一些狼需要从0走到L,也还有一些要从L走到0,本蒟蒻就不知道怎么处理了.

参考题解:

将左右两边分别都按终点从小到大排序,然后处理终点的矛盾,具体的我不清楚,我就乱写了个\(O(n^2)\)的矛盾处理,在枚举了起点的断点的基础上,我再从右集合中枚举了终点的一个断点,设他的终点为t,把终点小于t的属于左集合的全部都移动到L中,并且把右边集合的中小于t的移动到0,这样矛盾就解决了

然后发现还是不行,发现样例中还有直接从s移动到t的,于是我们选择判掉这一段,显然直接从s到t的必须是连续的一段区间,且左边的那矛盾的一段必须移动到0,右边的矛盾的一段必须移动到L,所以考虑枚举左边一段的终点和右边一段的起点,然后加上中间一段直接移动的即可

复杂度:\(O(n^3)\)

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=55,inf=2e8;
int n,L;
struct node{
int s,t;
}a[N];
bool comps(const node &p,const node &q){
return p.s<q.s;
}
bool compt(const node &p,const node &q){
return p.t<q.t;
}
int ans=2e8;
void solve(int x){
int tot=0;
sort(a+1,a+x+1,compt);
sort(a+x+1,a+n+1,compt);
for(int i=1;i<=x;i++)
tot+=a[i].s+a[i].t;
for(int i=x+1;i<=n;i++)
tot+=L-a[i].s+L-a[i].t;
int tmp=0,tl=0;
for(int i=x+1;i<=n;i++){
tmp=0;
for(int j=1;j<=x;j++){
if(a[j].t>=a[i].t)tmp+=L-a[j].t+L-a[j].t;
}
ans=Min(ans,tot+tmp+tl);
tl+=a[i].t+a[i].t;
}
}
bool check(int l,int r,int sl,int sr){
int lm=0,rm=2e8;
for(int i=l;i<=r;i++)lm=Max(lm,a[i].t);
for(int i=sl;i<=sr;i++)rm=Min(rm,a[i].t);
return lm<rm;
}
void work()
{
ans=2e8;
scanf("%d%d",&n,&L);
for(int i=1;i<=n;i++){
scanf("%d%d",&a[i].s,&a[i].t);
}
for(int i=0;i<=n;i++){
sort(a+1,a+n+1,comps);
solve(i);
}
sort(a+1,a+n+1,comps);
int si=0;
for(int i=0;i<=n;i++){
si+=a[i].t+a[i].s;
if(!check(1,i,i+1,n))continue;
int j=i+1,tot=0;
for(;j<=n;j++)
if(!check(i+1,j,j+1,n))break;
for(int k=i+1;k<j;k++)tot+=abs(a[k].t-a[k].s);
for(int k=j;k<=n;k++)tot+=L-a[k].s+L-a[k].t;
ans=Min(ans,si+tot);
}
printf("%d\n",ans);
} int main()
{
int T;cin>>T;
while(T--)work();
return 0;
}

51Nod 1331 狭窄的通道的更多相关文章

  1. 【51nod 1331】狭窄的通道

    Description 有一个长为L的狭窄通道,我们假设这个通道在x轴上,其两个出口分别在x=0与x=L处.在这个通道里有N只狼,第i只狼有一个初始位置ai,它想到达位置bi(0<=i<N ...

  2. 51nod1331 狭窄的通道

    题目传送门 这道题 51nod只Ac了十二个人 没有题解可以研究 所以就自己YY了半天 在这里先感谢一波岚清大爷 orz 然后这道题我分了两种情况 一种是左边的往左跑右边的往右跑 中间有一部分直接走不 ...

  3. 金山中学 rugular SRM 04 ——纪念我的第一次Ak

    虽然只是一场比较简单的比赛 但奈何我也比较弱啊.... T1 一道计算概率的题目 T SRM 04 描述 给个长度为 n 的数列,每次操作能将数列打乱(RandomShuffle),问在期望下需要多少 ...

  4. 游戏AI技术 2

    [Unity3D人工智能编程精粹 2] 1.跟随领队行为. 用靠近(Seek)或追逐(Pursuit)实现跟随领队行为并不好.在Seek中,AI角色会被推向领队,最终与领队占据相同位置.而Pursui ...

  5. 基于SketchUp和Unity3D的虚拟场景漫游和场景互动

    这是上学期的一次课程作业,难度不高但是也一并记录下来,偷懒地拿课程报告改改发上来. 课程要求:使用sketchUp建模,在Unity3D中实现场景漫游和场景互动. 知识点:建模.官方第一人称控制器.网 ...

  6. 默 of 2018:年终总结

    目录 1 概述:在平凡中求变 2 专业分流:一个时代的终点,我的新起点 2.1 我在专业分流前夕的境况 2.2 专业分流情况概述,以及对一篇文章的回顾 2.3 总结与余绪 2.4 附:关于理科与工科的 ...

  7. High-level NavMesh Building Components

    Here we introduce four high level components for the navigation system: //这里我们介绍四个高水平导航系统组件: NavMesh ...

  8. 51Nod 1667 概率好题 - 容斥原理

    题目传送门 无障碍通道 有障碍通道 题目大意 若$L_{i}\leqslant x_{i} \leqslant R_{i}$,求$\sum x_{i} = 0$以及$\sum x_{i} < 0 ...

  9. 用Python的Pandas和Matplotlib绘制股票唐奇安通道,布林带通道和鳄鱼组线

    我最近出了一本书,<基于股票大数据分析的Python入门实战 视频教学版>,京东链接:https://item.jd.com/69241653952.html,在其中给出了MACD,KDJ ...

随机推荐

  1. mongodb 集群分片

    分片 在Mongodb里面存在另一种集群,就是分片技术,可以满足MongoDB数据量大量增长的需求 当MongoDB存储海量的数据时,一台机器可能不足以存储数据,也可能不足以提供可接受的读写吞吐量,这 ...

  2. 【Swift】iOS导航栏错乱的原因

    #iOS开发高级技巧#导航栏错乱,也就是导航栏的显示效果与内容区不匹配,引发原因很多,其中最重要的有两个原因: 1.在viewwillappear,viewwilldisappear两个函数中,设置导 ...

  3. [知识梳理]课本3&9.1

    函数:关键词:参数.返回值.函数返回类型.函数体. 函数按照返回类型,可以分为有参函数和无参函数. 函数根据是否有返回值,可以分为返回值函数和非返回值函数.     函数的定义:函数的定义可以放在任意 ...

  4. nyoj 回文字符串

    回文字符串 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 所谓回文字符串,就是一个字符串,从左到右读和从右到左读是完全一样的,比如"aba".当 ...

  5. CentOS 6.5 Tomcat安装及配置

    1.安装jdk,配置jdk环境(此步骤略过) 2.下载安装tomcat 百度网盘链接: https://pan.baidu.com/s/1Ieejo7TQyzRAVPhQft8Phw 密码: dg2v ...

  6. 【iOS】 含tableView的ViewController基类的实现

    上篇博客写了ViewController的基类的实现,这篇博客主要写在BaseViewController的基础上实现一个含tableView控件的基类的实现,主要给包含tableView的页面来继承 ...

  7. 【第二十篇】C#微信H5支付 非微信内浏览器H5支付 浏览器微信支付

    微信开发者文档 微信H5支付官方文档   请阅读清楚  最起码把所有参数看一遍 这个地方也可以看看 微信案例 http://wxpay.wxutil.com/mch/pay/h5.v2.php,请在微 ...

  8. c语言清屏、等待、随机函数

    清屏函数 #include<conio.h> system("CLS");或system(cls); 等待函数 #include<windows.h>  S ...

  9. 基于DFS的拓扑排序

    传送门:Kahn算法拓扑排序 摘录一段维基百科上的伪码: L ← Empty list that will contain the sorted nodes S ← Set of all nodes ...

  10. Selenium+Chrome/phantomJS模拟浏览器爬取淘宝商品信息

    #使用selenium+Carome/phantomJS模拟浏览器爬取淘宝商品信息 # 思路: # 第一步:利用selenium驱动浏览器,搜索商品信息,得到商品列表 # 第二步:分析商品页数,驱动浏 ...