3129: [Sdoi2013]方程

Time Limit: 30 Sec  Memory Limit: 256 MB
Submit: 582  Solved: 338
[Submit][Status][Discuss]

Description

给定方程
    X1+X2+. +Xn=M
我们对第l..N1个变量进行一些限制:
Xl < = A
X2 < = A2
Xn1 < = An1
我们对第n1 + 1..n1+n2个变量进行一些限制:
Xn1+l > = An1+1
Xn1+2 > = An1+2
Xnl+n2 > = Anl+n2
求:在满足这些限制的前提下,该方程正整数解的个数。
答案可能很大,请输出对p取模后的答案,也即答案除以p的余数。

Input

输入含有多组数据,第一行两个正整数T,p。T表示这个测试点内的数据组数,p的含义见题目描述。
    对于每组数据,第一行四个非负整数n,n1,n2,m。
    第二行nl+n2个正整数,表示A1..n1+n2。请注意,如果n1+n2等于0,那么这一行会成为一个空行。

Output

共T行,每行一个正整数表示取模后的答案。

Sample Input

3 10007
3 1 1 6
3 3
3 0 0 5
3 1 1 3
3 3

Sample Output

3
6
0
【样例说明】
对于第一组数据,三组解为(1,3,2),(1,4,1),(2,3,1)
对于第二组数据,六组解为(1,1,3),(1,2,2),(1,3,1),(2,1,2),(2,2,1),(3,1,1)

HINT

n < = 10^9  , n1 < = 8   , n2 < = 8   ,  m < = 10^9  ,p<=437367875

对于l00%的测试数据:  T < = 5,1 < = A1..n1_n2  < = m,n1+n2 < = n

exlucas+容斥啊。
这道题主要考点是exlucas而不是容斥吧。
模型转换可以看成向盒子里装小球 ,转化成隔板原理

而由于组合数C(n,m)中n和m太大了且p不一定是质数,需要用exlucas来求组合数模
对于有下界限制的,强行先分给它 下界-1个
对于上界限制的直接容斥 没超的-至少1个超的+至少2个超的..
exlucas可以翻翻网上博客,主要就用了CRT和快速求阶乘来得到组合数
代码我懒得写了,复制了别人的

lucas&&exlucas   https://www.cnblogs.com/candy99/p/6637629.html
这道题代码原网址:http://blog.csdn.net/werkeytom_ftd/article/details/50152143

#include<cstdio>
#include<iostream>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
typedef long long ll;
ll f[10],a[20],b[20],c[20],d[20],e[20],pri[32000+10],fac[100000+10];
bool bz[32000+10];
ll i,j,k,l,t,n,m,n1,n2,ca,p,pp,num,top,xx,yy,cnt;
ll quicksortmi(ll x,ll y,ll p){
if (!y) return 1;
if (y==1) return x%p;
ll t=quicksortmi(x,y/2,p);
t=t*t%p;
if (y%2) t=t*(x%p)%p;
return t;
}
void gcd(ll a,ll b){
if (!b){
xx=1;
yy=0;
}
else{
gcd(b,a%b);
swap(xx,yy);
yy-=xx*(a/b);
}
}
ll getny(ll x,ll y){
gcd(x,y);
xx=(xx%y+y)%y;
return xx;
}
ll calcfac(ll n,ll p,ll pp){
if (n<pp) return fac[n];
ll t=quicksortmi(fac[p-1],n/p,p);
t=t*fac[n%p]%p;
cnt+=n/pp;
t=t*calcfac(n/pp,p,pp)%p;
return t;
}
ll calc(ll x,ll y,ll p,ll pp){
ll i;
fac[0]=1;
fo(i,1,p-1)
if (i%pp==0) fac[i]=fac[i-1];
else fac[i]=fac[i-1]*i%p;
cnt=0;
ll A=calcfac(y,p,pp);
ll tot=cnt;
cnt=0;
ll B=calcfac(x,p,pp);
B=B*calcfac(y-x,p,pp)%p;
B=getny(B,p);
return A*B%p*quicksortmi(pp,tot-cnt,p)%p;
}
ll comb(ll x,ll y,ll p){
if (x>y) return 0;
fo(i,1,top) a[i]=calc(x,y,d[i],e[i]);
fo(i,1,top) b[i]=getny(c[i],d[i]);
ll t=0;
fo(i,1,top) t=(t+a[i]*b[i]%p*c[i]%p)%p;
return t;
}
void dfs(ll x,ll m,ll cnt){
if (x==n1+1){
ll t=comb(n-1,m-1,p);
if (cnt%2) num=((num-t)%p+p)%p;
else num=(num+t)%p;
return;
}
dfs(x+1,m,cnt);
if (m-f[x]) dfs(x+1,m-f[x],cnt+1);
}
int main(){
fo(i,2,32000){
if (!bz[i]) pri[++k]=i;
fo(j,1,k){
if (pri[j]*i>32000) break;
bz[i*pri[j]]=1;
if (i%pri[j]==0) break;
}
}
scanf("%lld%lld",&ca,&p);
pp=p;
fo(i,1,k){
if (pp%pri[i]==0){
d[++top]=1;e[top]=pri[i];
while (pp%pri[i]==0){
d[top]*=pri[i];
pp/=pri[i];
}
}
}
fo(i,1,top) c[i]=p/d[i];
while (ca--){
scanf("%lld%lld%lld%lld",&n,&n1,&n2,&m);
fo(i,1,n1) scanf("%lld",&f[i]);
fo(i,1,n2){
scanf("%lld",&k);
if (k) m-=k-1;
}
num=0;
dfs(1,m,0);
printf("%lld\n",num);
}
}

bzoj3129[Sdoi2013]方程 exlucas+容斥原理的更多相关文章

  1. BZOJ3129 SDOI2013方程(容斥原理+扩展lucas)

    没有限制的话算一个组合数就好了.对于不小于某个数的限制可以直接减掉,而不大于某个数的限制很容易想到容斥,枚举哪些超过限制即可. 一般情况下n.m.p都是1e9级别的组合数没办法算.不过可以发现模数已经 ...

  2. bzoj千题计划267:bzoj3129: [Sdoi2013]方程

    http://www.lydsy.com/JudgeOnline/problem.php?id=3129 如果没有Ai的限制,就是隔板法,C(m-1,n-1) >=Ai 的限制:m减去Ai &l ...

  3. BZOJ3129 [Sdoi2013]方程 【扩展Lucas】

    题目 给定方程 X1+X2+. +Xn=M 我们对第l..N1个变量进行一些限制: Xl < = A X2 < = A2 Xn1 < = An1 我们对第n1 + 1..n1+n2个 ...

  4. BZOJ3129: [Sdoi2013]方程

    拓展Lucas+容斥原理 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cs ...

  5. 洛谷$P$3301 $[SDOI2013]$方程 $exLucas$+容斥

    正解:$exLucas$+容斥 解题报告: 传送门! 在做了一定的容斥的题之后再看到这种题自然而然就应该想到容斥,,,? 没错这题确实就是容斥,和这题有点儿像 注意下的是这里的大于和小于条件处理方式不 ...

  6. 【BZOJ3129】[SDOI2013]方程(容斥,拓展卢卡斯定理)

    [BZOJ3129][SDOI2013]方程(容斥,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 因为答案是正整数,所先给每个位置都放一个就行了,然后\(A\)都要减一. 大于的限制和没有的区别不大, ...

  7. BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理

    BZOJ_3129_[Sdoi2013]方程_组合数学+容斥原理 Description 给定方程     X1+X2+. +Xn=M 我们对第l..N1个变量进行一些限制: Xl < = A ...

  8. [SDOI2013]方程

    ...最近考了一道数学题.是典型的隔板问题. P.S.最近八中oj上面没有系统地刷过题 题面可以直接转化为m个球分到n个箱子,每个箱子至少放1个,前n1个箱子的球数必须满足全部小于等于A[i],接着n ...

  9. [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

    题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...

随机推荐

  1. Beta冲刺Day5

    项目进展 李明皇 今天解决的进度 服务器端还未完善,所以无法进行联动调试.对页面样式和逻辑进行优化 明天安排 前后端联动调试 林翔 今天解决的进度 完成维护登录态,实现图片上传,微信开发工具上传图片不 ...

  2. nyoj Color the fence

    Color the fence 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 Tom has fallen in love with Mary. Now Tom w ...

  3. 根据抽象工厂实现的DBHelpers类

    public abstract class DBHelper { public static SqlConnection conn = new SqlConnection("server=l ...

  4. Echarts 折线图y轴标签值太长时显示不全的解决办法

    问题 分析 解决办法 问题 先看一下正常的情况 再看一下显示不全的情况 所有的数据都是从后台取的,也就是说动态变化的,一开始的时候数据量不大不会出现问题,后面y轴的值越来越大的时候就出现了这个显示不全 ...

  5. JMeter入门(03)多台JMeter联合测试

    一.配置各个节点 1.配置jmeter.properties # Remote Hosts - comma delimited#remote_hosts=localhost:1099,localhos ...

  6. restful架构风格设计准则(六)版本管理

    读书笔记,原文链接:http://www.cnblogs.com/loveis715/p/4669091.html,感谢作者! 版本管理 在前面已经提到过,一个REST系统为资源所抽象出的URI实际上 ...

  7. OAuth是什么?

    一.OAuth的概念 1.问题的提出 2.应用场景 3.规范演进 二.OAuth的运行原理 1.参与者 访问私有数据需要用户参与(客户.用户.服务提供者) 访问公共数据不需要用户参与(客户.服务提供者 ...

  8. Mysql变量列表

    变量表解释 (https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html)

  9. python 函数 装饰器 内置函数

    函数 装饰器 内置函数 一.命名空间和作用域 二.装饰器 1.无参数 2.函数有参数 3.函数动态参数 4.装饰器参数 三.内置函数 salaries={ 'egon':3000, 'alex':10 ...

  10. [Debug]测试环境Giraffe无法正确登录

    BUG描述: 在测试环境192.168.2.72上的giraffe无法正确登录,输入正确的用户名.密码,点击登录无反应,输入错误的用户名密码会报错 原因: 2.72安装giraffe的磁盘空间已满,导 ...