1188 最大公约数之和 V2
题目来源: UVA
基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题
 
给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和。
 
 
 
相当于计算这段程序(程序中的gcd(i,j)表示i与j的最大公约数):
 
G=0;
for(i=1;i<N;i++)
for(j=i+1;j<=N;j++)
{
    G+=gcd(i,j);
}
 
Input
第1行:1个数T,表示后面用作输入测试的数的数量。(1 <= T <= 50000)
第2 - T + 1行:每行一个数N。(2 <= N <= 5000000)
Output
共T行,输出最大公约数之和。
Input示例
3
10
100
200000
Output示例
67
13015
143295493160
/*
51 nod 1188 最大公约数之和 V2 [1,i]中与i的 GCD(x,i)=t的个数可以看成 GCD(x/t,i/t)=1 ;即与i/t互质的个数。欧拉函数phi
但是我们要求的两两互质的情况,如果考虑枚举 最大公约数的值。那么[1,i]有phi[i]个,同理[1,i-1]中
有phi[i-1]个,所以求出欧拉函数后累加起来。
//超时,主要是枚举的时候 O(n),而求测试数据量T很大。 然后求找了下,发现可以预处理出所有的结果。然后直接进行O(1)的查询即可
也是先求出phi,然后看成 j=i*k,那么ans[j] += (phi(k)*i+phi(i)*k)即枚举最大公约数。
感觉有点卡时间,但题挺不错的 hhh-2016/05/31 22:19:58
*/
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <functional>
typedef long long ll;
using namespace std;
const int maxn = 5000050;
const ll mod = 1e9+7;
ll tans[maxn];
ll phi[maxn]; void read(int &ans){
char last=' ',ch=getchar();
while(ch<'0' || ch>'9')last=ch,ch=getchar();
while(ch>='0' && ch<='9')ans=ans*10+ch-'0',ch=getchar();
if(last=='-')ans=-ans;
} void Init()
{
for(int i=1;i<maxn;i++) phi[i]=i;
for(int i=2;i<maxn;i++)
if(phi[i]==i)
for(int j=i;j<maxn;j+=i)
phi[j]=phi[j]/i*(i-1);
//欧拉函数
for(int i = 2;i < maxn;i++)
tans[i] = phi[i]; for(int i = 2;i*i<= (maxn-50);i++)
{
tans[i*i] += phi[i] * i;
for(int k = i+1;k*i< maxn; k++) // j = i*k
{
tans[k*i] += (k*phi[i] + i*phi[k]);
}
}
for(int i = 1;i < maxn;i++)
tans[i] += tans[i-1];
} int main()
{
Init();
int T,n;
T = 0;
read(T);
while(T--)
{
n = 0;
read(n);
printf("%I64d\n",tans[n]);
}
return 0;
}

  

51 nod 1188 最大公约数之和 V2的更多相关文章

  1. 1188 最大公约数之和 V2

    1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB  给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和.       相当于计算这段程 ...

  2. 51nod - 1188 - 最大公约数之和 V2 - 数论

    https://www.51nod.com/Challenge/Problem.html#!#problemId=1188 求\(\sum\limits_{i=1}^{n-1}\sum\limits_ ...

  3. 51nod 1188 最大公约数之和 V2

    第二个\( O(T\sqrt(n)) \)复杂度T了..T了..T了...天地良心,这能差多少?! 于是跑去现算(. \[ \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}gcd(i, ...

  4. 51nod1188 最大公约数之和 V2

    考虑每一个数对于答案的贡献.复杂度是O(nlogn)的.因为1/1+1/2+1/3+1/4......是logn级别的 //gcd(i,j)=2=>gcd(i/2,j/2)=1=>phi( ...

  5. [51nod1188]最大公约数之和 V2(筛法)

    题面 传送门 题解 口胡的整除分块单次询问\(O(\sqrt{n})\)的做法居然\(T\)了?那还是好好看正解吧-- 首先我们枚举\(j\),求对于每个\(j\)有所有\(i<j\)的\(\g ...

  6. 51 NOD 1244 莫比乌斯函数之和(杜教筛)

    1244 莫比乌斯函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens) ...

  7. 51Nod 最大公约数之和V1,V2,V3;最小公倍数之和V1,V2,V3

    1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 输入 1个数N ...

  8. 51 nod 1405 树的距离之和

    1405 树的距离之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题   给定一棵无根树,假设它有n个节点,节点编号从1到n, 求任意两点之间的距离(最短路径)之 ...

  9. 51 nod 1427 文明 (并查集 + 树的直径)

    1427 文明 题目来源: CodeForces 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 难度:6级算法题   安德鲁在玩一个叫“文明”的游戏.大妈正在帮助他. 这个游 ...

随机推荐

  1. 去掉xcode编译warning:ld: warning: directory not found for option '-L

    选择工程, 编译的 (targets) 选择 Build Settings 菜单 查找 Library Search Paths 和 Framework Search Paths, 删掉编译报warn ...

  2. 日志 --BUG记录

    2014-12-15日 在做520wawa的免费推广   部署web应用时 错把path设置为"/*",导致启动tomcat时,导致错误 <Context path=&quo ...

  3. C简单实现动态顺序表

    <span style="font-size:18px;">一下为简单实现:</span> #define SIZE 3; typedef int Data ...

  4. DML数据操作语言之查询(二)

    当我们查询出了N条记录之后 ,我们知道一共是几条记录,或者这些记录某一字段(列值)的最大值,最小值,平均值等,就可以使用聚合函数. 1.聚合函数 聚合函数会将null 排除在外.但是count(*)例 ...

  5. selenium的Python使用(一)浏览器驱动的安装及使用

    一.selenium的安装 直接使用pip进行安装 pip install selenium    #(安装最新版本) pip install selenium==3.6.0   #(安装指定版本) ...

  6. 查找git ignore的追踪

    前言 版本控制说简单也简单,说复杂也困难的多.作为开发者,最基础的版本管理和团队协作的功能必须掌握.而其他一些相关的信息也可以了解下.比如,这次就有同事遇到了问题. 遇到的问题 在windows下,往 ...

  7. 非PE病毒介绍

    1.宏病毒 1.1 介绍 本文中的宏特制office系列办公软件中的宏,Microsoft Office中对宏的定义为"宏就是能够组织在一起的,可以作为一个独立命令来执行的一系列Word 命 ...

  8. Java中对List去重, Stream去重

    问题 当下互联网技术成熟,越来越多的趋向去中心化.分布式.流计算,使得很多以前在数据库侧做的事情放到了Java端.今天有人问道,如果数据库字段没有索引,那么应该如何根据该字段去重?大家都一致认为用Ja ...

  9. Centos系统运行nodejs

    这里我们需要先搭建一下运行的环境,直接yum安装就可以了! [root@iZwz9f80ph5u8tlqp6pi9cZ ~]# yum -y install nodejs 这里我们的环境就搭好了!安装 ...

  10. DataContractJsonSerializer序列化时间类型时转换为UTC溢出问题

    问题描述 如下一个实体类,含有非空时间类型属性,默认是C#的最小时间,在使用DataContractJsonSerializer将该类对象序列化成JSON时,抛出异常信息:System.Runtime ...