题目描述

约翰家的 N 头奶牛正在排队游行抗议。一些奶牛情绪激动,约翰测算下来,排在第 i 位的奶牛
的理智度为 A i ,数字可正可负。
约翰希望奶牛在抗议时保持理性,为此,他打算将这条队伍分割成几个小组,每个抗议小组的理
智度之和必须大于或等于零。奶牛的队伍已经固定了前后顺序,所以不能交换它们的位置,所以分在
一个小组里的奶牛必须是连续位置的。除此之外,分组多少组,每组分多少奶牛,都没有限制。
约翰想知道有多少种分组的方案,由于答案可能很大,只要输出答案除以 1000000009 的余数即
可。

输入

• 第一行:单个整数 N,1 ≤ N ≤ 100000
• 第二行到第 N + 1 行:第 i + 1 行有一个整数 A i ,−10 5 ≤ A i ≤ 10 5

输出

• 单个整数:表示分组方案数模 1000000009 的余数

样例输入

4 2 3 -3 1

样例输出

4

提示

如果分两组,可以把前三头分在一组,或把
后三头分在一组;如果分三组,可以把中间两头
分在一组,第一和最后一头奶牛自成一组;最后
一种分法是把四头奶牛分在同一组里。
 
 
题解:
朴素做法 if(sum[i]-sum[j]>=0)f[i]+=f[j].
于是发现只要sum[j]<=sum[i] 即可转移
然后以sum[i]为下标,维护树状数组即可,没事可以离散化一下.
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int mod=,N=;
int gi(){
int str=,f=;char ch=getchar();
while(ch>'' || ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<='')str=str*+ch-,ch=getchar();
return str*f;
}
int a[N],id[N],n;ll Tree[N*],sum[N],b[N],f[N];
int pf(ll x)
{
int l=,r=n,mid;
while(l<=r)
{
mid=(l+r)>>;
if(b[mid]==x)return mid;
if(x>b[mid])l=mid+;
else r=mid-;
}
return ;
}
void add(int sta,ll x){for(int i=sta;i<=n;i+=(i&(-i)))Tree[i]+=x,Tree[i]%=mod;}
ll getsum(int sta)
{
ll sum=;
for(int i=sta;i>=;i-=(i&(-i)))sum+=Tree[i],sum%=mod;
return sum;
}
int main()
{
n=gi();
for(int i=;i<=n;i++)a[i]=gi(),sum[i]=sum[i-]+a[i],b[i]=sum[i];
sort(b+,b+n+);
for(int i=;i<=n;i++)
{
id[i]=pf(sum[i]);
}
for(int i=;i<=n;i++)
{
f[i]=getsum(id[i]);
if(sum[i]>=)f[i]++;
f[i]%=mod;
add(id[i],f[i]);
}
printf("%lld",f[n]%mod);
return ;
}

【USACO】奶牛抗议 树状数组+dp的更多相关文章

  1. LUOGU P2344 奶牛抗议 (树状数组优化dp)

    传送门 解题思路 树状数组优化dp,f[i]表示前i个奶牛的分组的个数,那么很容易得出$f[i]=\sum\limits_{1\leq j\leq i}f[j-1]*(sum[i]\ge sum[j- ...

  2. codeforces 597C (树状数组+DP)

    题目链接:http://codeforces.com/contest/597/problem/C 思路:dp[i][j]表示长度为i,以j结尾的上升子序列,则有dp[i][j]= ∑dp[i-1][k ...

  3. hdu 4622 Reincarnation trie树+树状数组/dp

    题意:给你一个字符串和m个询问,问你l,r这个区间内出现过多少字串. 连接:http://acm.hdu.edu.cn/showproblem.php?pid=4622 网上也有用后缀数组搞得. 思路 ...

  4. Codeforces 597C. Subsequences (树状数组+dp)

    题目链接:http://codeforces.com/contest/597/problem/C 给你n和数(1~n各不同),问你长为k+1的上升自序列有多少. dp[i][j] 表示末尾数字为i 长 ...

  5. HDU2227Find the nondecreasing subsequences(树状数组+DP)

    题目大意就是说帮你给出一个序列a,让你求出它的非递减序列有多少个. 设dp[i]表示以a[i]结尾的非递减子序列的个数,由题意我们可以写出状态转移方程: dp[i] = sum{dp[j] | 1&l ...

  6. CodeForces - 314C Sereja and Subsequences (树状数组+dp)

    Sereja has a sequence that consists of n positive integers, a1, a2, ..., an. First Sereja took a pie ...

  7. HDU 6348 序列计数 (树状数组 + DP)

    序列计数 Time Limit: 4500/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Subm ...

  8. BZOJ3378:[USACO]MooFest 狂欢节(树状数组)

    Description 每一年,约翰的N(1≤N≤20000)只奶牛参加奶牛狂欢节.这是一个全世界奶牛都参加的大联欢.狂欢节包括很多有趣的活动,比如干草堆叠大赛.跳牛栏大赛,奶牛之间有时还相互扎屁股取 ...

  9. [Codeforces261D]Maxim and Increasing Subsequence——树状数组+DP

    题目链接: Codeforces261D 题目大意:$k$次询问,每次给出一个长度为$n$的序列$b$及$b$中的最大值$maxb$,构造出序列$a$为$t$个序列$b$连接而成,求$a$的最长上升子 ...

随机推荐

  1. io多路复用(三)

    #!/usr/bin/env python # -*- coding:utf-8 -*- import socket sk1 = socket.socket() sk1.bind(('127.0.0. ...

  2. Flask 学习 七 用户认证

    使用werkzeug 实现密码散列 from werkzeug.security import generate_password_hash,check_password_hash class Use ...

  3. Lock(三)查看是谁把表给锁了

    查看是谁把表给锁了 select se1.inst_id as 被阻塞的会话节点, se2.inst_id as 罪魁祸首节点, se1.sid as 被阻塞的会话ID, ob.object_name ...

  4. python网络爬虫与信息提取 学习笔记day1

    Day1: 安装python之后,为其配置requests第三方库,并爬取百度主页内容. 语句解释: r.status_code检测请求的状态码,如果状态码为200,则说明访问成功,否则,则说明访问失 ...

  5. 在ABPZERO中,扩展实体的方法。

    内容 介绍 扩展的抽象实体 将新属性添加给用户 添加迁移 在界面上显示地址 在用户编辑/添加功能中添加地址 扩展的非抽象类实体 获得版本的派生实体 添加迁移 在界面上添加价格 在创建/编辑版本功能中加 ...

  6. Let's Encrypt,免费好用的 HTTPS 证书

    很早之前我就在关注 Let's Encrypt 这个免费.自动化.开放的证书签发服务.它由 ISRG(Internet Security Research Group,互联网安全研究小组)提供服务,而 ...

  7. 记java应用linux服务单个CPU使用率100%分析

    之前在做项目的过程中,项目完成后在linux服务器上做性能测试,当服务跑起来的时候发现cpu使用率很奇怪,java应用把单个cpu跑满了,其他cpu利用率0%. 刚开始遇到这问题的时候我第一时间反应使 ...

  8. Python系列-python函数

    函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.你已经知道Python提供了许多内建函数,比如print().但你也可以自己创建函数,这 ...

  9. express学习(二)—— Post()类型和中间件

    1.数据:GET.POST 2.中间件:使用.写.链式操作 GET-无需中间件 req.query POST-需要"body-parser" server.use(bodyPars ...

  10. windows下nginx代理ftp服务器

    我所在的开发环境里,nginx和ftp在同一台服务器. ftp根目录: nginx的配置: 在nginx.conf中加入: server { listen ; server_name localhos ...