当N大于等于2,k大于等于3时,
易得:mH(N)被Nk-1给bound住。
VC维:最小断点值-1/H能shatter的最大k值。
这里的k指的是存在k个输入能被H给shatter,不是任意k个输入都能被H给shatter。
如:2维感知机能shatter平面上呈三角形排列的3个样本点,却shatter不了平面上呈直线排列的3个样本点,
因为当另外2个点标签值一致时,中间那个点无法取与它们相反的标签值。
若无断点,则该H下,VC维为无穷。
所以,存在断点------>有限VC维。
d维感知器算法下,VC维=d+1。
证明:
D,大小为d+1------>矩阵X,易得X是(d+1)*(d+1)的矩阵,X的秩小于等于d+1,
所以存在X,行向量之间线性无关,每一行向量可取任意标签值,
所以H能shatter这个X对应的d+1个样本点,即VC维>=d+1;
D,大小为d+2------>矩阵X,易得X是(d+2)*(d+1)的矩阵,X的秩小于d+2,
所以任意X,总有一行与其他行向量线性相关,该行的标签值收到限制,
所以H不能shatter这个X对应的d+2个样本点,即VC维<=d+1;
所以,VC维=d+1。
VC维,反映的是H的自由度,可粗略认为是自由参数的个数(不总是)。
VC维增大,Ein减小,模型复杂度增大;
VC维减小,Ein增大,模型复杂度减小。
给定差异容忍度epsilon,概率容忍度delta,VC维,求满足条件需要多少样本。
理论上,N约等于10000倍的VC维,
实际上,N取10倍的VC维就足够了。
可见,VC维是十分松弛的,
1.使用霍夫丁不等式,不管f、输入分布P;
2.使用成长函数,不管具体的D;
3.使用N的多项式,不管H(VC维相同);
4.使用联合bound,不管A。
之所以使用VC维是为了定性分析VC维里包含的信息,
而且它对所有模型都近似松弛。
 

机器学习基石:07 The VC Dimension的更多相关文章

  1. 机器学习基石笔记:07 The VC Dimension

    当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入 ...

  2. 07 The VC Dimension

    当N大于等于2,k大于等于3时, 易得:mH(N)被Nk-1给bound住. VC维:最小断点值-1/H能shatter的最大k值. 这里的k指的是存在k个输入能被H给shatter,不是任意k个输入 ...

  3. 机器学习基石7-The VC Dimension

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 前几节课着重介绍了机器能够学习的条件并做了详细的推导和解释.机器能够学习必须满 ...

  4. 【The VC Dimension】林轩田机器学习基石

    首先回顾上节课末尾引出来的VC Bound概念,对于机器学习来说,VC dimension理论到底有啥用. 三点: 1. 如果有Break Point证明是一个好的假设集合 2. 如果N足够大,那么E ...

  5. 【机器学习基石笔记】七、vc Dimension

    vc demension定义: breakPoint - 1 N > vc dimension, 任意的N个,就不能任意划分 N <= vc dimension,存在N个,可以任意划分 只 ...

  6. Coursera台大机器学习课程笔记6 -- The VC Dimension

    本章的思路在于揭示VC Dimension的意义,简单来说就是假设的自由度,或者假设包含的feature vector的个数(一般情况下),同时进一步说明了Dvc和,Eout,Ein以及Model C ...

  7. 机器学习基石12-Nonlinear Transformation

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课介绍了分类问题的三种线性模型,可以用来解决binary classif ...

  8. 机器学习基石8-Noise and Error

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课,我们主要介绍了VC Dimension的概念.如果Hypothese ...

  9. 机器学习基石11-Linear Models for Classification

    注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课,我们介绍了Logistic Regression问题,建立cross ...

随机推荐

  1. oracle、导出、导入

    一.数据库导入: No1.查询所有表中那些是空表. select table_name from user_tables where NUM_ROWS=0; No2.拼接字符串生成SQL执行语句. s ...

  2. 【HTTP协议】---HTTP协议详解

    HTTP协议详解 一.HTTP简介 1.HTTP协议,即超文本传输协议(Hypertext transfer protocol).是一种详细规定了浏览器和万维网(WWW = World Wide We ...

  3. MyGod_alpha版本测试报告

    买尬-Alpha版本测试报告 @(二手市场APP)[MyGod团队|团队项目|版本测试] 项目名称:武汉大学校园二手市场APP--买尬 软件版本:1.0.0 开发团队:MyGod 开发代表:程环宇 张 ...

  4. 从0开始的LeetCode生活—461-Hamming Distance(汉明距离)

    题目: The Hamming distance between two integers is the number of positions at which the corresponding ...

  5. Beta冲刺NO.1

    Beta冲刺 第一天 1. 昨天的困难 由于今天还是第一天,所以暂时没有昨天的困难. 2. 今天解决的进度 潘伟靖: 对代码进行了review 1.将某些硬编码改为软编码 2.合并了一些方法,简化代码 ...

  6. 201621123043 《Java程序设计》第8周学习总结

    1. 本周学习总结 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 contains的源代码如下 public boolean contain ...

  7. 20145237 《Java程序设计》第八周学习总结

    20145237 <Java程序设计>第八周学习总结 教材学习内容总结 第十五章 通用API 15.1 日志 日志API简介 • java.util.logging包提供了日志功能相关类与 ...

  8. 《招一个靠谱的移动开发》iOS面试题及详解(下篇)

    iOS面试知识点 现在进入本篇的正题.本篇的面试题是我认为比较好的iOS开发基础知识点,希望大家看过这后在理解的基础上掌握而不是死记硬背.死记硬背很快也会忘记的. 1 iOS基础 1.1 父类实现深拷 ...

  9. MySql数据库的常用命令

    1.连接Mysql 连接本地的mysql数据库 :   mysql -u root -p    (回车之后会提示输入密码) 连接远程主机的mysql数据库 : 假设远程主机的IP为:110.110.1 ...

  10. 【详细】Lucene使用案例

    Lucene是apache软件基金会4 jakarta项目组的一个子项目,是一个开放源代码的全文检索引擎工具包,但它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引 ...