Andrew Ng机器学习课程笔记--week7(SVM)
本周主要学习SVM
一、 内容概要
- Large Margin Classification
- Optimization Objective(优化Objective(损失函数))
- Large Margin Intuition(大边距的直观理解)
- Mathematics Behind Large Magin Classification(最大间距分类器背后的数学推导)
- Kernels
- Kernels 1
- Kernels 2
- SVMs in Practice
- Using An SVM
二、重点&难点
1. Large Margin Classification
1) Optimization Objective(优化Objective(损失函数))
- 回顾一下逻辑回归模型
\[h_θ(x) = \frac{1}{1+e^{-θ^Tx}}\]
\[J(θ)=\frac{1}{m} [\sum_{i=1}^{m} y^{(i)}( -logh_θ(x^{(i)})) + (1-y^{(i)})(-log(1-h_θ(x^{(i)}) ) ] + \frac{λ}{2m}\sum_{j=1}^{n}θ_j^2\]
在SVM中对cost function作如下等效变化(即将log函数替换成折线)
- 折线化变形
替换后cost function变为
\[J(θ)=\frac{1}{m} [\sum_{i=1}^{m} y^{(i)}Cost_1(θ^Tx^{(i)}) + (1-y^{(i)})Cost_0(θ^Tx^{(i)}) ] + \frac{λ}{2m}\sum_{j=1}^{n}θ_j^2\]
Cost的下标分别表示y所对应的值。
- 去m变形
另外我们知道为了得到最优化的一组θ,我们需要通过求\(min J(θ)\)进而得出一组解,所以上式中的m可以约掉,因为m是常数,所以对于求最小值没有影响,所以cost function可以进一步变形为:
\[J(θ)= [\sum_{i=1}^{m} y^{(i)}Cost_1(θ^Tx^{(i)}) + (1-y^{(i)})Cost_0(θ^Tx^{(i)}) ] + \frac{λ}{2}\sum_{j=1}^{n}θ_j^2\]
- 乘以C变形
继续变形前我们可以假设上式左边为训练数据集项(Training data set term),记为A,右侧为正则项,记为λB,所以有\(J(θ) = A+λB\)。
按照上面所说,此时在等式两侧乘以一个数不会影响最终的结果,假设乘以一个C(\(C=\frac{1}{λ}\)),所以有\(J(θ)=CA+B\)
此时有
\[J(θ)= C[\sum_{i=1}^{m} y^{(i)}Cost_1(θ^Tx^{(i)}) + (1-y^{(i)})Cost_0(θ^Tx^{(i)}) ] + \frac{1}{2}\sum_{j=1}^{n}θ_j^2\]
2) Large Margin Intuition(大边距的直观理解)
上面将普通逻辑回归中的log函数变形后得到的曲线如下:
区别:
If y=1, we want \(θ^Tx≥1\) (not just ≥0)
If y=0, we want \(θ^Tx≤-1\) (not just ≤0)
和引入正则项同理,当C取非常大的值时,我们希望如下蓝色圈住的部分接近于0,即使得A=0
但是要如何使A=0呢?参考上面的折线图,我们可以知道要使得A=0,则需要满足:
- 当y=1,则\(θ^Tx≥1\)
- 当y=0,则\(θ^Tx≤-1\)
此时即等价于
3) Mathematics Behind Large Magin Classification
在推导公式之前需要回顾一下向量内积的概念。
已知SVM的优化目标是:
\[min\frac{1}{2}\sum_{j=1}^nθ_j^2 且满足\]
\[当y=1时,theta^Tx^{(i)}≥1\]
\[当y=0时,theta^Tx^{(i)}≤-1\]
为了方便理解,令\(θ_0=0\),特征数n=2,则有
\[min\frac{1}{2}\sum_{j=1}^nθ_j^2 = \frac{1}{2}(θ_1^2+θ_2^2)=\frac{1}{2}\sqrt{(θ_1^2+θ_2^2)}^2=\frac{1}{2}||θ||^2\]
其中,||θ||为向量θ的长度或称为θ的范数。
如果将\(θ^Tx(i)\)看成是经过原点(因为θ0=0) 的两个向量相乘,如下图:
则\(θ^Tx^{(i)}\)等价于向量\(x^{(i)}\)在向量θ上的投影\(p^{(i)}\)与θ的范数||θ||相乘,即
\[θ^Tx^{(i)} = p^{(i)}||θ|| = θ_1x_1^{(1)}+θ_2x_1^{(2)}\]
故SVM优化目标变为
\[min\frac{1}{2}||θ||^2 且满足\]
\[当y=1时,p^{(i)}||θ||≥1\]
\[当y=0时,p^{(i)}||θ||≤-1\]
直观的理解\(p^{(i)}||θ||\)的意义。
假设theta0=0,下面展示了一个小间距决策边界的例子。(绿色为决策边界)
首先解释一下为什么θ向量会垂直于决策边界。
因为θ的斜率是\(\frac{θ_2}{θ_1}\),决策边界表达式为\(θ^Tx=0\),即\(θ_1x_1+θ_2x_2=0\),斜率为\(\frac{θ_2}{θ_1}\),所以θ向量会垂直于决策边界。看第一个例子(x1)
假如决策边界最开始如下图
将\(x^1\)投影到θ向量,得到\(p^1\),可以看到\(p^1\)值很小。SVM的优化目标是\(min\frac{1}{2}||θ||^2\),但是还需要满足\(|p^{(i)}||θ|||≥1\),而又因为\(p^1\)值很小,所以||θ||值就需要较大才行,显然这与优化目标背道而驰,所以还有优化的空间。
x2 同理,不再赘述。
- 优化后的例子
此时\(p^1\)值明显增大,||θ||变小,达到优化目的。
2. Kernels
1) Kernels 1
之前课程中已经提到过通过使用多项式来解决非线性拟合问题,如下图所示
- 引入核函数
在SVM中我们引入核函数来解决这个问题。
假设\(h_θ(x) = θ_0+θ_1f_1+θ_2f_2+……\),然后随机人为的选取几个向量\(l^{(i)}\)作为标记(landmarks),为方便说明选取三个:
同时定义核函数(核函数很多种,这里使用的是高斯核函数Gaussion Kernels)为
\[f_i = similarity(x^{(i)}, l^{(i)}) = e^{(-\frac{||x^{(i)}-l^{(i)}||^2}{2δ^2})}\]
这里的核函数\(f_i\)可以理解成相似度,即点x与标记点l如果很相近则预判为1,反之为0.
由高斯核函数的表达式也可以很好的理解:
\[若x^{(i)}≈l^{(i)},则f_i≈1\]
\[若x^{(i)}与l^{(i)}相距较远,则f_i≈0\]
另外高斯核函数中有一个参数\(δ^2\),它对于结果的影响如下面几个图所示
可知\(δ^2\)越小,图像越窄,下降的速度也就越快。
- 核函数计算示例
首先还是假设选取三个landmarks,并且分类的方法是:
\[若θ_0+θ_1f_1+θ_2f_2+……≥0,预测为1,反之为0\]
假设θ向量已知为\(θ_0=-0.5,θ_1=1,θ_2=1,θ_3=0\)
下面看第一个点的分类情况:
此时\(x≈l^{(1)},故f_1=1\),同理因为远离其余两个landmarks,所以\(f_2=0,f_3=0\)。
所以带入计算公式有
\[h_θ(x) = θ_0+θ_1f_1+θ_2f_2+θ_3f_3=-0.5+1*1+1*0+0*0=0.5≥0\]
故该点y=1
继续看下图新添的两个x坐标点
和如上同样的分析后可以知道,绿色的点有y=1,青色的点是y=0
按照上面的计算方法,在计算了大量点后可以得到如下的边界
2) Kernels 2
- 优化目标
上面的landmarks都是人工选取的几个点而已,但是真实计算时会计算很多点。另外因为引入了核函数,所以SVM优化目标变为:
\[minJ(θ)=min C[\sum_{i=1}^{m} y^{(i)}Cost_1(θ^Tf^{(i)}) + (1-y^{(i)})Cost_0(θ^Tf^{(i)}) ] + \frac{1}{2}\sum_{j=1}^{n}θ_j^2\]
注意原来cost函数中的x变成了f。
另外上式中右边的正则项可以变成\(\sum_{j=1}^{n}θ_j^2=θ^Tθ\),还可以继续变形
\(\sum_{j=1}^{n}θ_j^2=θ^Tθ=θ^TMθ\),其中矩阵M取决于你所使用的核函数。
需要注意,上述那些SVM的计算技巧应用到别的算法,如逻辑回归中,会变得非常慢,所以一般不将核函数以及标记点等方法用在逻辑回归中。
- 参数影响
1.C
前面提到过的\(C=\frac{1}{λ}\),C对bias和variance的影响如下:
C太大,相当于λ太小,会产生高方差,低偏差;
C太小,相当于λ太大,会产生高偏差,低方差。
2.\(δ^2\)
\(δ^2\)大,则特征\(f_i\)变化较缓慢,可能会产生高偏差,低方差;
\(δ^2\)小,则特征\(f_i\)变化不平滑,可能会产生高方差,低偏差。
3. SVMs in Practice
1) Using An SVM
SVM和逻辑回归的选择问题
什么时候该用逻辑回归?什么时候该用SVM?
①如果n相对于m来说很大,则应该使用逻辑回归或者线性核函数(无核)的SVM。
m较小时,使用线性分类器效果就挺不错了,并且也没有足够的数据去拟合出复杂的非线性分类器。
②如果n很小,m中等大小,则应该使用高斯核函数SVM。
③如果n很小,m很大,则高斯核函数的SVM运行会很慢。这时候应该创建更多的特征变量,然后再使用逻辑回归或者线性核函数(无核)的SVM。
对于以上这些情况,神经网络很可能做得很好,但是训练会比较慢。实际上SVM的优化问题是一种凸优化问题,好的SVM优化软件包总是能找到全局最小值或者是接近全局最小的值。
Andrew Ng机器学习课程笔记--week7(SVM)的更多相关文章
- Andrew Ng机器学习课程笔记--汇总
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...
- Andrew Ng机器学习课程笔记(五)之应用机器学习的建议
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...
- Andrew Ng机器学习课程笔记(四)之神经网络
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...
- Andrew Ng机器学习课程笔记(三)之正则化
Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...
- Andrew Ng机器学习课程笔记(二)之逻辑回归
Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...
- Andrew Ng机器学习课程笔记(一)之线性回归
Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 ...
- Andrew Ng机器学习课程笔记--week6(精度&召回率)
Advice for applying machine learning 本周主要学习如何提升算法效率,以及如何判断学习算法在什么时候表现的很糟糕和如何debug我们的学习算法.为了让学习算法表现更好 ...
随机推荐
- multipath多路径实验02-配置多路径软件
multipath多路径实验02-配置多路径软件 在上一篇文章<multipath多路径实验01-构建iSCSI模拟环境>,我构建了iSCSI的模拟环境,在文章最后,已经成功配置并在主机上 ...
- new/delete 与 malloc/free的区别
一.概述 在C++中,申请动态内存与释放动态内存用new/delete 与 malloc/free都可以,而且他们的存储方式相同,new/malloc申请的动态内存位于堆中,无法被操作系统自动 ...
- CSS外边距合并问题
今天无意中碰到了外边距合并的问题,于是便研究了一下.这里做个笔记. 所谓外边距合并,指的是当两个垂直外边距相遇时,它们将形成一个外边距.合并后的外边距的高度等于两个发生合并的外边距的高度中的较大者. ...
- Spark SQL笔记——技术点汇总
目录 概述 原理 组成 执行流程 性能 API 应用程序模板 通用读写方法 RDD转为DataFrame Parquet文件数据源 JSON文件数据源 Hive数据源 数据库JDBC数据源 DataF ...
- (转)XML中必须进行转义的字符
场景:在工作中接触到很多xml文件,为了更好的操作这些文件,所有很有必要熟知xml文件的相关语义. 1 引入 编写XML代码经常遗漏的常识: XML实体中不允许出现"&", ...
- 共享---samba
1. 虚拟机,可以采用共享文件夹 2. windows之间可以使用网络邻居共享 3. windows与linux,linux与linux之间建立samba服务器 4. 安装samba服务器 r ...
- iOS Socket 整理以及CocoaAsyncSocket、SRWebSocket源码解析(一)
写在准备动手的时候: Socket通讯在iOS中也是很常见,自己最近也一直在学习Telegram这个开源项目,Telegram就是在Socket的基础上做的即时通讯,这个相信了解这个开源项目的也都知道 ...
- [补档][Poi2014]FarmCraft
[Poi2014]FarmCraft 题目 mhy住在一棵有n个点的树的1号结点上,每个结点上都有一个妹子. mhy从自己家出发,去给每一个妹子都送一台电脑,每个妹子拿到电脑后就会开始安装zhx牌杀毒 ...
- struts2增删改查---layer---iframe层
在这里写一下struts2中的简单的增删改查 struts.xml中的配置 <?xml version="1.0" encoding="UTF-8" ?& ...
- kickstart自动化安装--tftp+nfs+dhcp
使用kickstart实现Centos 自动化安装 Kickstart自动化安装简介: 规模化:同时装配多台 服务器 自动化 :安装系统,配置各种服务 远程实现:不需要光盘,U盘等安装介质 优势: ( ...