Andrew Ng机器学习课程笔记--week7(SVM)
本周主要学习SVM
一、 内容概要
- Large Margin Classification
- Optimization Objective(优化Objective(损失函数))
- Large Margin Intuition(大边距的直观理解)
- Mathematics Behind Large Magin Classification(最大间距分类器背后的数学推导)
- Kernels
- Kernels 1
- Kernels 2
- SVMs in Practice
- Using An SVM
二、重点&难点
1. Large Margin Classification
1) Optimization Objective(优化Objective(损失函数))
- 回顾一下逻辑回归模型
\[h_θ(x) = \frac{1}{1+e^{-θ^Tx}}\]
\[J(θ)=\frac{1}{m} [\sum_{i=1}^{m} y^{(i)}( -logh_θ(x^{(i)})) + (1-y^{(i)})(-log(1-h_θ(x^{(i)}) ) ] + \frac{λ}{2m}\sum_{j=1}^{n}θ_j^2\]
在SVM中对cost function作如下等效变化(即将log函数替换成折线)

- 折线化变形
替换后cost function变为
\[J(θ)=\frac{1}{m} [\sum_{i=1}^{m} y^{(i)}Cost_1(θ^Tx^{(i)}) + (1-y^{(i)})Cost_0(θ^Tx^{(i)}) ] + \frac{λ}{2m}\sum_{j=1}^{n}θ_j^2\]
Cost的下标分别表示y所对应的值。
- 去m变形
另外我们知道为了得到最优化的一组θ,我们需要通过求\(min J(θ)\)进而得出一组解,所以上式中的m可以约掉,因为m是常数,所以对于求最小值没有影响,所以cost function可以进一步变形为:
\[J(θ)= [\sum_{i=1}^{m} y^{(i)}Cost_1(θ^Tx^{(i)}) + (1-y^{(i)})Cost_0(θ^Tx^{(i)}) ] + \frac{λ}{2}\sum_{j=1}^{n}θ_j^2\]
- 乘以C变形
继续变形前我们可以假设上式左边为训练数据集项(Training data set term),记为A,右侧为正则项,记为λB,所以有\(J(θ) = A+λB\)。
按照上面所说,此时在等式两侧乘以一个数不会影响最终的结果,假设乘以一个C(\(C=\frac{1}{λ}\)),所以有\(J(θ)=CA+B\)
此时有
\[J(θ)= C[\sum_{i=1}^{m} y^{(i)}Cost_1(θ^Tx^{(i)}) + (1-y^{(i)})Cost_0(θ^Tx^{(i)}) ] + \frac{1}{2}\sum_{j=1}^{n}θ_j^2\]
2) Large Margin Intuition(大边距的直观理解)
上面将普通逻辑回归中的log函数变形后得到的曲线如下:

区别:
If y=1, we want \(θ^Tx≥1\) (not just ≥0)
If y=0, we want \(θ^Tx≤-1\) (not just ≤0)
和引入正则项同理,当C取非常大的值时,我们希望如下蓝色圈住的部分接近于0,即使得A=0

但是要如何使A=0呢?参考上面的折线图,我们可以知道要使得A=0,则需要满足:
- 当y=1,则\(θ^Tx≥1\)
- 当y=0,则\(θ^Tx≤-1\)
此时即等价于

3) Mathematics Behind Large Magin Classification
在推导公式之前需要回顾一下向量内积的概念。
已知SVM的优化目标是:
\[min\frac{1}{2}\sum_{j=1}^nθ_j^2 且满足\]
\[当y=1时,theta^Tx^{(i)}≥1\]
\[当y=0时,theta^Tx^{(i)}≤-1\]
为了方便理解,令\(θ_0=0\),特征数n=2,则有
\[min\frac{1}{2}\sum_{j=1}^nθ_j^2 = \frac{1}{2}(θ_1^2+θ_2^2)=\frac{1}{2}\sqrt{(θ_1^2+θ_2^2)}^2=\frac{1}{2}||θ||^2\]
其中,||θ||为向量θ的长度或称为θ的范数。
如果将\(θ^Tx(i)\)看成是经过原点(因为θ0=0) 的两个向量相乘,如下图:

则\(θ^Tx^{(i)}\)等价于向量\(x^{(i)}\)在向量θ上的投影\(p^{(i)}\)与θ的范数||θ||相乘,即
\[θ^Tx^{(i)} = p^{(i)}||θ|| = θ_1x_1^{(1)}+θ_2x_1^{(2)}\]
故SVM优化目标变为
\[min\frac{1}{2}||θ||^2 且满足\]
\[当y=1时,p^{(i)}||θ||≥1\]
\[当y=0时,p^{(i)}||θ||≤-1\]
直观的理解\(p^{(i)}||θ||\)的意义。
假设theta0=0,下面展示了一个小间距决策边界的例子。(绿色为决策边界)
首先解释一下为什么θ向量会垂直于决策边界。
因为θ的斜率是\(\frac{θ_2}{θ_1}\),决策边界表达式为\(θ^Tx=0\),即\(θ_1x_1+θ_2x_2=0\),斜率为\(\frac{θ_2}{θ_1}\),所以θ向量会垂直于决策边界。看第一个例子(x1)
假如决策边界最开始如下图

将\(x^1\)投影到θ向量,得到\(p^1\),可以看到\(p^1\)值很小。SVM的优化目标是\(min\frac{1}{2}||θ||^2\),但是还需要满足\(|p^{(i)}||θ|||≥1\),而又因为\(p^1\)值很小,所以||θ||值就需要较大才行,显然这与优化目标背道而驰,所以还有优化的空间。
x2 同理,不再赘述。
- 优化后的例子

此时\(p^1\)值明显增大,||θ||变小,达到优化目的。
2. Kernels
1) Kernels 1
之前课程中已经提到过通过使用多项式来解决非线性拟合问题,如下图所示

- 引入核函数
在SVM中我们引入核函数来解决这个问题。
假设\(h_θ(x) = θ_0+θ_1f_1+θ_2f_2+……\),然后随机人为的选取几个向量\(l^{(i)}\)作为标记(landmarks),为方便说明选取三个:

同时定义核函数(核函数很多种,这里使用的是高斯核函数Gaussion Kernels)为
\[f_i = similarity(x^{(i)}, l^{(i)}) = e^{(-\frac{||x^{(i)}-l^{(i)}||^2}{2δ^2})}\]

这里的核函数\(f_i\)可以理解成相似度,即点x与标记点l如果很相近则预判为1,反之为0.
由高斯核函数的表达式也可以很好的理解:
\[若x^{(i)}≈l^{(i)},则f_i≈1\]
\[若x^{(i)}与l^{(i)}相距较远,则f_i≈0\]
另外高斯核函数中有一个参数\(δ^2\),它对于结果的影响如下面几个图所示

可知\(δ^2\)越小,图像越窄,下降的速度也就越快。
- 核函数计算示例
首先还是假设选取三个landmarks,并且分类的方法是:
\[若θ_0+θ_1f_1+θ_2f_2+……≥0,预测为1,反之为0\]
假设θ向量已知为\(θ_0=-0.5,θ_1=1,θ_2=1,θ_3=0\)
下面看第一个点的分类情况:

此时\(x≈l^{(1)},故f_1=1\),同理因为远离其余两个landmarks,所以\(f_2=0,f_3=0\)。
所以带入计算公式有
\[h_θ(x) = θ_0+θ_1f_1+θ_2f_2+θ_3f_3=-0.5+1*1+1*0+0*0=0.5≥0\]
故该点y=1
继续看下图新添的两个x坐标点

和如上同样的分析后可以知道,绿色的点有y=1,青色的点是y=0
按照上面的计算方法,在计算了大量点后可以得到如下的边界

2) Kernels 2
- 优化目标
上面的landmarks都是人工选取的几个点而已,但是真实计算时会计算很多点。另外因为引入了核函数,所以SVM优化目标变为:
\[minJ(θ)=min C[\sum_{i=1}^{m} y^{(i)}Cost_1(θ^Tf^{(i)}) + (1-y^{(i)})Cost_0(θ^Tf^{(i)}) ] + \frac{1}{2}\sum_{j=1}^{n}θ_j^2\]
注意原来cost函数中的x变成了f。
另外上式中右边的正则项可以变成\(\sum_{j=1}^{n}θ_j^2=θ^Tθ\),还可以继续变形
\(\sum_{j=1}^{n}θ_j^2=θ^Tθ=θ^TMθ\),其中矩阵M取决于你所使用的核函数。
需要注意,上述那些SVM的计算技巧应用到别的算法,如逻辑回归中,会变得非常慢,所以一般不将核函数以及标记点等方法用在逻辑回归中。
- 参数影响
1.C
前面提到过的\(C=\frac{1}{λ}\),C对bias和variance的影响如下:
C太大,相当于λ太小,会产生高方差,低偏差;
C太小,相当于λ太大,会产生高偏差,低方差。
2.\(δ^2\)
\(δ^2\)大,则特征\(f_i\)变化较缓慢,可能会产生高偏差,低方差;
\(δ^2\)小,则特征\(f_i\)变化不平滑,可能会产生高方差,低偏差。
3. SVMs in Practice
1) Using An SVM
SVM和逻辑回归的选择问题
什么时候该用逻辑回归?什么时候该用SVM?
①如果n相对于m来说很大,则应该使用逻辑回归或者线性核函数(无核)的SVM。
m较小时,使用线性分类器效果就挺不错了,并且也没有足够的数据去拟合出复杂的非线性分类器。
②如果n很小,m中等大小,则应该使用高斯核函数SVM。
③如果n很小,m很大,则高斯核函数的SVM运行会很慢。这时候应该创建更多的特征变量,然后再使用逻辑回归或者线性核函数(无核)的SVM。
对于以上这些情况,神经网络很可能做得很好,但是训练会比较慢。实际上SVM的优化问题是一种凸优化问题,好的SVM优化软件包总是能找到全局最小值或者是接近全局最小的值。
Andrew Ng机器学习课程笔记--week7(SVM)的更多相关文章
- Andrew Ng机器学习课程笔记--汇总
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...
- Andrew Ng机器学习课程笔记(五)之应用机器学习的建议
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...
- Andrew Ng机器学习课程笔记(四)之神经网络
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...
- Andrew Ng机器学习课程笔记(三)之正则化
Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...
- Andrew Ng机器学习课程笔记(二)之逻辑回归
Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...
- Andrew Ng机器学习课程笔记(一)之线性回归
Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 ...
- Andrew Ng机器学习课程笔记--week6(精度&召回率)
Advice for applying machine learning 本周主要学习如何提升算法效率,以及如何判断学习算法在什么时候表现的很糟糕和如何debug我们的学习算法.为了让学习算法表现更好 ...
随机推荐
- Reverse bits - 按位反转一个int型数字
Reverse bits of a given 32 bits unsigned integer. For example, given input 43261596 (represented in ...
- .Net中关于相等的问题
在.Net框架中,如果您查看所有类型的的基类:System.Object类,将找到如下4个与相等判断的方法: static Equals() virtual Equals() static Refer ...
- tensorflow dropout函数应用
1.dropout dropout 是指在深度学习网络的训练过程中,按照一定的概率将一部分神经网络单元暂时从网络中丢弃,相当于从原始的网络中找到一个更瘦的网络,这篇博客中讲的非常详细 2.tens ...
- ngin隐藏版本号
Nginx默认是显示版本号的,如: 这样就给人家看到你的服务器nginx版本,这样暴露出来的版本号就容易变成攻击者可利用的信息.所以,从安全的角度来说,隐藏版本号会相对安全些! 配置如下: 修改n ...
- iOS开发实战-上架AppStore 通过内购和广告获得收益
写在前面 由于一些原因需要离职,准备重回大上海 忽然发现手头上也没什么独立App,那就随便写个放到AppStore上吧,凑个数吧.哈哈哈. 这个App是无聊找配色的时候看到的一套图 正好春节在家没什么 ...
- Java以及PHP安装环境
开学前想把web的知识系统掌握一下,跟着极客学院学html5. 安装了intellij idead.xampp.jdk.eclipse for php. 下面列举一些安装过程中会出现的问题,以及解决. ...
- 初学Python(一)——数据类型
初学Python(一)——数据类型 初学Python,主要整理一些学习到的知识点,这次是数据类型. #-*- coding:utf-8 -*- #整数 print 1 #浮点数=小数 print 1. ...
- java迭代器浅析
简介 迭代器是遍历容器的一种常用方法,它屏蔽了容器的实现细节,无需暴露数据结构内部,就可以对容器进行遍历,迭代器本身也是一种设计模式,迭代是一种特殊的遍历方式 Iterator 在java中,迭代器接 ...
- WAS 部署 Birt 报表出现 error.CannotStartupOSGIPlatform 和 更新web.xml
在WAS7.0中部署Birt报表会出现error.CannotStartupOSGIPlatform错误,通常需要这样修改 1.依次打开Applications->WebSphere enter ...
- RSA简介(一)——数论原理
RSA是最常用的非对称加密算法. 所谓非对称加密,就是说有两个密钥,一个密钥加密只可以用另外一个密钥解密,一般一个作为公钥,公开给所有人用来加密用,而另一个用来解密其他拥有公钥的加密结果,叫做私钥.另 ...