Counting Cliques

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 184    Accepted Submission(s): 56

Problem Description
A clique is a complete graph, in which there is an edge between every pair of the vertices. Given a graph with N vertices and M edges, your task is to count the number of cliques with a specific size S in the graph. 
 
Input
The first line is the number of test cases. For each test case, the first line contains 3 integers N,M and S (N ≤ 100,M ≤ 1000,2 ≤ S ≤ 10), each of the following M lines contains 2 integers u and v (1 ≤ u < v ≤ N), which means there is an edge between vertices u and v. It is guaranteed that the maximum degree of the vertices is no larger than 20.
 
 
Output
For each test case, output the number of cliques with size S in the graph.
 
 
Sample Input

3
4 3 2
1 2
2 3
3 4
5 9 3
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5
6 15 4
1 2
1 3
1 4
1 5
1 6
2 3
2 4
2 5
2 6
3 4
3 5
3 6
4 5
4 6
5 6

思路:构造一个团,如果一个点与这个团的所有点都有边,则将其加入团中,统计含s个点的团的个数。关于优化,可以建单向边来减少搜索量。

代码:

 #include<bits/stdc++.h>
//#include<regex>
#define db double
#include<vector>
#define ll long long
#define vec vector<ll>
#define Mt vector<vec>
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define MP make_pair
#define PB push_back
#define inf 0x3f3f3f3f3f3f3f3f
#define fr(i,a,b) for(int i=a;i<=b;i++)
const int N=1e3+;
const int mod=1e9+;
const int MOD=mod-;
const db eps=1e-;
using namespace std;
bool d[][];
int n,m,s,t;
int ans;
vector<int> g[N];
void dfs(int u,int *a,int cnt)
{
if(cnt==s){
ans++;
return;
}
bool ok;
for(int i=;i<g[u].size();i++)
{
ok=;
int v=g[u][i];
for(int j=;j<=cnt;j++){
if(!d[a[j]][v]) {ok=;break;}
}
if(ok)
{
a[++cnt]=v;//加点
dfs(v,a,cnt);//继续搜
a[cnt--]=;
}
}
}
int main(){
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
ci(t);
while(t--)
{
ci(n),ci(m),ci(s);
ans=;
for(int i=;i<=n;i++) g[i].clear();
memset(d,,sizeof(d));
for(int i=;i<m;i++){
int u,v;
ci(u),ci(v);
if(u>v) swap(u,v);
g[u].push_back(v);
d[u][v]=d[v][u]=;
}
for(int i=;i<=n;i++){
if(g[i].size()>=s-){
int a[];
a[]=i;//构建团
int cnt=;
dfs(i,a,cnt);
}
}
pi(ans);
}
return ;
}

hdu 5952 连通子图的更多相关文章

  1. HDU - 5952 Counting Cliques

    Counting Cliques HDU - 5952 OJ-ID: hdu-5952 author:Caution_X date of submission:20191110 tags:dfs,gr ...

  2. 最大半连通子图 bzoj 1093

    最大半连通子图 (1.5s 128MB) semi [问题描述] 一个有向图G = (V,E)称为半连通的(Semi-Connected),如果满足:∀ u, v ∈V,满足u->v 或 v - ...

  3. BZOJ1093 [ZJOI2007]最大半连通子图

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  4. BZOJ 1093 [ZJOI2007] 最大半连通子图(强联通缩点+DP)

    题目大意 题目是图片形式的,就简要说下题意算了 一个有向图 G=(V, E) 称为半连通的(Semi-Connected),如果满足图中任意两点 u v,存在一条从 u 到 v 的路径或者从 v 到 ...

  5. BZOJ1093 最大半连通子图

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到 ...

  6. BZOJ 1093 [ZJOI2007]最大半连通子图

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1986  Solved: 802[Submit][St ...

  7. bzoj 1093 [ZJOI2007]最大半连通子图(scc+DP)

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2286  Solved: 897[Submit][St ...

  8. BZOJ 1093: [ZJOI2007]最大半连通子图( tarjan + dp )

    WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就 ...

  9. [BZOJ]1093 最大半连通子图(ZJOI2007)

    挺有意思的一道图论. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:∀u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v ...

随机推荐

  1. macaca 环境搭建篇,(web 和安卓)

    appium研究一段时间,感觉appium太不稳定了, 后来听说了阿里开源了macaca,那么我就想尝尝鲜,啥都不说,我感觉还是赶紧上手搭建环境吧. macaca介绍: Macaca是一套完整的自动化 ...

  2. 用PyCharm执行测试成功但无法生成HTMLTestRunner报告

    问题:代码写的没问题,执行也成功了,但就是无法生成HTMLTestRunner的报告 其实这是编辑器搞得鬼,编辑器为了方便用户执行测试,都有一项功能,可以用编辑器来调用unittest或者nose来执 ...

  3. 再起航,我的学习笔记之JavaScript设计模式18(观察者模式)

    观察者模式 观察者模式(Observer): 又被称为发布-订阅者模式或消息机制,定义了一种依赖关系,解决了主体对象与观察者之间功能的耦合. 创建一个观察者对象 首先我们创建一个闭包对象,让其在页面加 ...

  4. spring boot / cloud (十六) 分布式ID生成服务

    spring boot / cloud (十六) 分布式ID生成服务 在几乎所有的分布式系统或者采用了分库/分表设计的系统中,几乎都会需要生成数据的唯一标识ID的需求, 常规做法,是使用数据库中的自动 ...

  5. Gvim安装nerd_tree插件

    1.先去官网下载nerd_tree插件 http://www.vim.org/scripts/script.php?script_id=1658 2.解压缩将nerd_tree目录下的doc目录和pl ...

  6. JavaScript事件循环(Event Loop)机制

    JavaScript 是单线程单并发语言 什么是单线程 主程序只有一个线程,即同一时间片断内其只能执行单个任务. 为什么选择单线程? JavaScript的主要用途是与用户互动,以及操作DOM.这决定 ...

  7. 【★】IT界8大恐怖预言

    IT界的8大恐怖预言 本文字数:3276 建议阅读时间:你开心就好 第三次科技革命已经进入白热化阶段---信息技术革命作为其中最主要的一环已经奠定了其基本格局和趋势.OK大势已定,根据目前的形势,小编 ...

  8. less和scss

    一.less基础语法 1.声明变量:@变量名:变量值:      使用变量:@变量名; 2.混合(Mixins) 1)无参混合 声明: .class{} 调用:在选择器中,使用.class;直接调用 ...

  9. 集美大学网络1413第十四次作业成绩(团队九) -- 测试与发布&博客展示(Beta版本)

    题目 团队作业9--测试与发布(Beta版本) 团队作业9成绩  团队/分值 Beta版本测试报告 Beta版本发布说明       总分  Bug类别. 数量 场景测试 测试结果 测试矩阵 出口条件 ...

  10. 微信小程序swiper标签的测试

    swiper属性(具体看官方文档): 一:testswiper.wxml的代码如下.testswiper.js自动生成示例代码. //testswiper.wxml <view > < ...