题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4869

Turn the pokers

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2001    Accepted Submission(s): 707

Problem Description
During summer vacation,Alice stay at home for a long time, with nothing to do. She went out and bought m pokers, tending to play poker. But she hated the traditional gameplay. She wants to change. She puts these pokers face down, she decided to flip poker n times, and each time she can flip Xi pokers. She wanted to know how many the results does she get. Can you help her solve this problem?
 
Input
The input consists of multiple test cases. 
Each test case begins with a line containing two non-negative integers n and m(0<n,m<=100000). 
The next line contains n integers Xi(0<=Xi<=m).
 
Output
Output the required answer modulo 1000000009 for each test case, one per line.
 
Sample Input
3 4
3 2 3
3 3
3 2 3
 
Sample Output
8
3

Hint

For the second example:
0 express face down,1 express face up
Initial state 000
The first result:000->111->001->110
The second result:000->111->100->011
The third result:000->111->010->101
So, there are three kinds of results(110,011,101)

 
Author
FZU
 
Source
完全学习的http://blog.csdn.net/libin56842/article/details/38065951,感谢
通过这个学习了快速幂和费马小定理的应用
一、快速幂:
  对于a^n可以用分治的思想令a^n = a^(n/2)*a^(n/2) 注意要分奇偶。
  一种直观的用递归表示的方法如下:
    

 LL quickmod(LL a,LL b)
{
LL ans = ;
if(b==) return ans;
if(b&) ans = (ans*a)%mod;
return ans = (quickmod(a,b/))%mod;
})%mod;

  为了降低复杂度。我们现在展开这个递归式子,写一个非递归的程序:

  

1.如果b是偶数,我们可以记k = a2 mod c,那么求(k)b/2 mod c就可以了。

2.如果b是奇数,我们也可以记k = a2 mod c,那么求

((k)b/2 mod c × a ) mod c =((k)b/2 mod c * a) mod c 就可以了。

上述过程最后一定是b先等于1再等于0,故b=0时候结束程序

  下面是模板代码:

 LL quickmod(LL a,LL b)
{
LL ans = ;
while(b)
{
if(b&) ans = (ans*a)%mod;
a = (a*a)%mod;
b>>=;
}
return ans;
}

下面介绍一下费马小定理:

  a^(p-1) = 1(mod p)  p是素数

  一般应用有:

A: a^b mod p 在b很大的时候可以先用b = b % (p-1)

B:   在阶乘中减去除法的操作。a^(p-2) = 1/a(mod p)

这个题就应用了B

下面是这个题的ac代码:

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define LL long long
const LL mod = ;
const int N = ; LL f[N]; void init()
{
int i;
f[] = ;
for(i = ; i < N; i++)
f[i] = (f[i-]*i)%mod;
} LL quickmod(LL a, LL b)
{
LL ans = ;
while(b)
{
if(b&){
ans = (ans*a)%mod;
}
b>>=;
a = (a*a)%mod;
}
return ans;
} int main()
{
int n,m,i,j,k,l,r,x,ll,rr;//ll保存最小的1的个数
//l表示上一次的最小的1的个数,rr保存的是最多的1的个数
//r表示的是上一次的最多的1的个数
init();
while(~scanf("%d%d",&n,&m))
{
l = r = ;
for( i = ; i < n; i++)
{
scanf("%d",&x);
if(l>=x) ll = l - x;
else if(r>=x) ll = ((l%)==(x%))?:;
else ll = x-r; if(r+x<=m) rr = r+x;
else if(l+x<=m) rr = (((l+x)%)==(m%)?m:m-);
else rr = *m-(l+x); l = ll;
r = rr;
}
LL sum = ;
for(i = l; i<=r; i+=)
sum+=((f[m]%mod)*(quickmod((f[i]*f[m-i])%mod,mod-)%mod))%mod;
printf("%I64d\n",sum%mod);
}
return ;
}
 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define mod 1000000009
#define LL __int64
#define maxn 100000+5 LL f[maxn]; void set()
{
int i;
f[] = ;
for(i = ; i<maxn; i++)
f[i] = (f[i-]*i)%mod;
} LL quickmod(LL a,LL b)
{
LL ans = ;
while(b)
{
if(b&)
{
ans = (ans*a)%mod;
b--;
}
b/=;
a = ((a%mod)*(a%mod))%mod;
}
return ans;
} int main()
{
int n,m,i,j,k,l,r,x,ll,rr;
set();
while(~scanf("%d%d",&n,&m))
{
l = r = ;
for(i = ; i<n; i++)
{
scanf("%d",&x);
//计算最小的1的个数,尽可能多的让1->0
if(l>=x) ll = l-x;//当最小的1个数大于x,把x个1全部翻转
else if(r>=x) ll = ((l%)==(x%))?:;//当l<x<=r,由于无论怎么翻,其奇偶性必定相等,所以看l的奇偶性与x是否相同,相同那么知道最小必定变为0,否则变为1
else ll = x-r;//当x>r,那么在把1全部变为0的同时,还有x-r个0变为1
//计算最大的1的个数,尽可能多的让0->1
if(r+x<=m) rr = r+x;//当r+x<=m的情况下,全部变为1
else if(l+x<=m) rr = (((l+x)%) == (m%)?m:m-);//在r+x>m但是l+x<=m的情况下,也是判断奇偶,同态那么必定在中间有一种能全部变为1,否则至少有一张必定为0
else rr = *m-(l+x);//在l+x>m的情况下,等于我首先把m个1变为了0,那么我还要翻(l+x-m)张,所以最终得到m-(l+x-m)个1 l = ll,r = rr;
}
LL sum = ;
for(i = l; i<=r; i+=)//使用费马小定理和快速幂的方法求和
sum+=((f[m]%mod)*(quickmod((f[i]*f[m-i])%mod,mod-)%mod))%mod;
printf("%I64d\n",sum%mod);
} return ;
}

hdu_4869(费马小定理+快速幂)的更多相关文章

  1. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  2. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  3. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  4. hdu4549(费马小定理 + 快速幂)

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n ...

  5. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  6. hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. 牛客训练四:Applese 涂颜色(费马小定理+快速幂)

    题目链接:传送门 思路: 考虑每一列有2种颜色,总共有n行,每一行的第一个格确定颜色,由于左右颜色不相同,后面的行就确定了. 所以总共有2^n中结果. 由于n太大,所以要用到费马小定理a^n%mod= ...

  8. hdu 4704 sum(费马小定理+快速幂)

    题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1     4 s(2)=3     1,3      3,1       2,2 s ...

  9. hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)

    题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) ...

随机推荐

  1. 查看windows、linux的SN

     gwmi win32_bios    [root@live-al-ops-pxe-2 ~]# dmidecode | grep Number | sed -n '1p' Serial Number: ...

  2. BZOJ 4819 新生舞会

    第一句话:算出3.363636的孩子啊,你跑错流种了. 貌似上一篇我讲SDOI出原题?嘿还真是! 半个月前有一个叫WG的男人给我们搞过一场考试... ... 里面有一道题叫做保密... ...SDOI ...

  3. iis部署php项目

    今天跟着学习了如何在IIS下部署php项目,操作很简单,记录一下步骤! 1.启动iis服务器 最后点击确定就完成了 2.打开iis 点击进入即可 3.创建网站 进入添加网站. 添加注意事项如图所示! ...

  4. Python学习(三):迭代器、生成器、装饰器、递归、算法、正则

    1.迭代器 迭代器是访问集合的一种方式,迭代对象从集合的第一个元素开始访问,直到元素被访问结束,迭代器只能往前不能后退,最大的优点是不要求事先准备好整个迭代过程中的元素,这个特点使得它特别适合用于遍历 ...

  5. ES6 函数的扩展1

    1. 函数参数的默认值 基本用法 在ES6之前,不能直接为函数的参数指定默认值,为了避免这个问题,通常需要先判断一下参数y是否被赋值,如果没有,再等于默认值. ES6允许为函数的参数设置默认值,即直接 ...

  6. iptables 命令详解

    转载:http://blog.chinaunix.net/uid-26495963-id-3279216.html 一:前言 防火墙,其实说白了讲,就是用于实现Linux下访问控制的功能的,它分为硬件 ...

  7. js控制图片自动缩放,实现铺满盒子,不变形,完全局中

    此js一般用于控制图片铺满盒子,但是比例不变,并且绝对局中原理:判断图片的高宽与盒子高宽的大小的关系,然后通过比例来控制图片的缩放及定位<!DOCTYPE html PUBLIC "- ...

  8. Robot Framework学习笔记(六)------RIDE界面说明

    RIDE是一款专门用来编辑Robot Framework用例的软件,用Python编写并且开源. 1.测试项目.测试套件Edit 标签 测试项目和测试套件所提供的 Edit 标签的功能是一样的. 在 ...

  9. postfix : 452 4.3.1 Insufficient system storage

    postfix Error Message: 452 4.3.1 Insufficient system storage --> 空间不足. 但是实际情况是我的各个分区都没有满,只是我的20G ...

  10. 使用MyBatis时接收值和返回值选择Map类型或者实体类型

    MyBatis作为现近JavaEE企业级项目开发中常用的持久层框架之一,以其简洁高效的ORM映射和高度的SQL的自由性被广大开发人员认可.Mybatis在接收系统传来的参数和返回的参数时主要可以有Ma ...