题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4869

Turn the pokers

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2001    Accepted Submission(s): 707

Problem Description
During summer vacation,Alice stay at home for a long time, with nothing to do. She went out and bought m pokers, tending to play poker. But she hated the traditional gameplay. She wants to change. She puts these pokers face down, she decided to flip poker n times, and each time she can flip Xi pokers. She wanted to know how many the results does she get. Can you help her solve this problem?
 
Input
The input consists of multiple test cases. 
Each test case begins with a line containing two non-negative integers n and m(0<n,m<=100000). 
The next line contains n integers Xi(0<=Xi<=m).
 
Output
Output the required answer modulo 1000000009 for each test case, one per line.
 
Sample Input
3 4
3 2 3
3 3
3 2 3
 
Sample Output
8
3

Hint

For the second example:
0 express face down,1 express face up
Initial state 000
The first result:000->111->001->110
The second result:000->111->100->011
The third result:000->111->010->101
So, there are three kinds of results(110,011,101)

 
Author
FZU
 
Source
完全学习的http://blog.csdn.net/libin56842/article/details/38065951,感谢
通过这个学习了快速幂和费马小定理的应用
一、快速幂:
  对于a^n可以用分治的思想令a^n = a^(n/2)*a^(n/2) 注意要分奇偶。
  一种直观的用递归表示的方法如下:
    

 LL quickmod(LL a,LL b)
{
LL ans = ;
if(b==) return ans;
if(b&) ans = (ans*a)%mod;
return ans = (quickmod(a,b/))%mod;
})%mod;

  为了降低复杂度。我们现在展开这个递归式子,写一个非递归的程序:

  

1.如果b是偶数,我们可以记k = a2 mod c,那么求(k)b/2 mod c就可以了。

2.如果b是奇数,我们也可以记k = a2 mod c,那么求

((k)b/2 mod c × a ) mod c =((k)b/2 mod c * a) mod c 就可以了。

上述过程最后一定是b先等于1再等于0,故b=0时候结束程序

  下面是模板代码:

 LL quickmod(LL a,LL b)
{
LL ans = ;
while(b)
{
if(b&) ans = (ans*a)%mod;
a = (a*a)%mod;
b>>=;
}
return ans;
}

下面介绍一下费马小定理:

  a^(p-1) = 1(mod p)  p是素数

  一般应用有:

A: a^b mod p 在b很大的时候可以先用b = b % (p-1)

B:   在阶乘中减去除法的操作。a^(p-2) = 1/a(mod p)

这个题就应用了B

下面是这个题的ac代码:

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define LL long long
const LL mod = ;
const int N = ; LL f[N]; void init()
{
int i;
f[] = ;
for(i = ; i < N; i++)
f[i] = (f[i-]*i)%mod;
} LL quickmod(LL a, LL b)
{
LL ans = ;
while(b)
{
if(b&){
ans = (ans*a)%mod;
}
b>>=;
a = (a*a)%mod;
}
return ans;
} int main()
{
int n,m,i,j,k,l,r,x,ll,rr;//ll保存最小的1的个数
//l表示上一次的最小的1的个数,rr保存的是最多的1的个数
//r表示的是上一次的最多的1的个数
init();
while(~scanf("%d%d",&n,&m))
{
l = r = ;
for( i = ; i < n; i++)
{
scanf("%d",&x);
if(l>=x) ll = l - x;
else if(r>=x) ll = ((l%)==(x%))?:;
else ll = x-r; if(r+x<=m) rr = r+x;
else if(l+x<=m) rr = (((l+x)%)==(m%)?m:m-);
else rr = *m-(l+x); l = ll;
r = rr;
}
LL sum = ;
for(i = l; i<=r; i+=)
sum+=((f[m]%mod)*(quickmod((f[i]*f[m-i])%mod,mod-)%mod))%mod;
printf("%I64d\n",sum%mod);
}
return ;
}
 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define mod 1000000009
#define LL __int64
#define maxn 100000+5 LL f[maxn]; void set()
{
int i;
f[] = ;
for(i = ; i<maxn; i++)
f[i] = (f[i-]*i)%mod;
} LL quickmod(LL a,LL b)
{
LL ans = ;
while(b)
{
if(b&)
{
ans = (ans*a)%mod;
b--;
}
b/=;
a = ((a%mod)*(a%mod))%mod;
}
return ans;
} int main()
{
int n,m,i,j,k,l,r,x,ll,rr;
set();
while(~scanf("%d%d",&n,&m))
{
l = r = ;
for(i = ; i<n; i++)
{
scanf("%d",&x);
//计算最小的1的个数,尽可能多的让1->0
if(l>=x) ll = l-x;//当最小的1个数大于x,把x个1全部翻转
else if(r>=x) ll = ((l%)==(x%))?:;//当l<x<=r,由于无论怎么翻,其奇偶性必定相等,所以看l的奇偶性与x是否相同,相同那么知道最小必定变为0,否则变为1
else ll = x-r;//当x>r,那么在把1全部变为0的同时,还有x-r个0变为1
//计算最大的1的个数,尽可能多的让0->1
if(r+x<=m) rr = r+x;//当r+x<=m的情况下,全部变为1
else if(l+x<=m) rr = (((l+x)%) == (m%)?m:m-);//在r+x>m但是l+x<=m的情况下,也是判断奇偶,同态那么必定在中间有一种能全部变为1,否则至少有一张必定为0
else rr = *m-(l+x);//在l+x>m的情况下,等于我首先把m个1变为了0,那么我还要翻(l+x-m)张,所以最终得到m-(l+x-m)个1 l = ll,r = rr;
}
LL sum = ;
for(i = l; i<=r; i+=)//使用费马小定理和快速幂的方法求和
sum+=((f[m]%mod)*(quickmod((f[i]*f[m-i])%mod,mod-)%mod))%mod;
printf("%I64d\n",sum%mod);
} return ;
}

hdu_4869(费马小定理+快速幂)的更多相关文章

  1. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  2. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  3. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  4. hdu4549(费马小定理 + 快速幂)

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n ...

  5. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  6. hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. 牛客训练四:Applese 涂颜色(费马小定理+快速幂)

    题目链接:传送门 思路: 考虑每一列有2种颜色,总共有n行,每一行的第一个格确定颜色,由于左右颜色不相同,后面的行就确定了. 所以总共有2^n中结果. 由于n太大,所以要用到费马小定理a^n%mod= ...

  8. hdu 4704 sum(费马小定理+快速幂)

    题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1     4 s(2)=3     1,3      3,1       2,2 s ...

  9. hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)

    题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) ...

随机推荐

  1. JAVA Socket编程(一)之UDP通信

    常见的通讯协议有udp和tcp. --将数据及源.目的封装在数据包中,不需要建立连接: --每个数据包的大小限制在64k以内: --因无连接,是不可靠协议: --不需要建立连接,所以传输速度快,但是容 ...

  2. 开源API测试工具 Hitchhiker v0.7更新 - Schedule的对比diff

    Hitchhiker 是一款开源的支持多人协作的 Restful Api 测试工具,支持Schedule, 数据对比,压力测试,支持脚本定制请求,可以轻松部署到本地,和你的team成员一起协作测试Ap ...

  3. BZOJ 4818 SDOI2017 序列计数

    刚出炉的省选题,还是山东的. 自古山东出数学和网络流,堪称思维的殿堂,比某地数据结构成风好多了. 废话不说上题解. 1.题面 求:n个数(顺序可更改),值域为[1,m],和为p的倍数,且这些数里面有质 ...

  4. w 命令详解

    作用: 用于显示已经登录系统的用户列表, 并显示用户正在执行的指令. 执行这个命令可得知目前登入系统的用户有哪些人, 以及他们正在执行的程序.  单独执行w 命令会显示所有的用户, 您也可指定用户名称 ...

  5. Jmeter中java.net.URISyntaxException错误

    今天在做服务发布性能测试的时候,傻傻的犯了个错,没有对参数进行仔细的检查,直接从fiddler中copy到jmeter中了,业务流程配置好后执行测试报错... jmeter中的响应结果如下: java ...

  6. NumPy学习笔记 三 股票价格

    NumPy学习笔记 三 股票价格 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.&l ...

  7. 高仿二次元网易GACHA

    高仿二次元网易GACHA,所有接口均通过Charles抓取而来,图片资源通过 https://github.com/yuedong56/Assets.carTool 工具提取. 详情见github地址 ...

  8. 一起学Linux04之Linux文件基本属性

    Linux系统是一种典型的多用户系统,不同的用户处于不同的地位,拥有不同的权限.为了保护系统的安全性,Linux系统对不同的用户访问同一文件(包括目录文件)的权限做了不同的规定. 为了介绍文件属性,首 ...

  9. CentOS下LAMP环境安装配置

    本来几下yum都能装好的,yum却出问题了,报错:AttributeError: 'YumBaseCli' object has no attribute '_not_found_i',可能是某个文件 ...

  10. Java容器---Map基础

    1.Map API (1)Map 集合类用于存储元素对(称作"键"和"值"),其中每个键映射到一个值. java.util Interface Map<K ...