hdu_4869(费马小定理+快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4869
Turn the pokers
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2001 Accepted Submission(s): 707
Each test case begins with a line containing two non-negative integers n and m(0<n,m<=100000).
The next line contains n integers Xi(0<=Xi<=m).
3 2 3
3 3
3 2 3
3
For the second example:
0 express face down,1 express face up
Initial state 000
The first result:000->111->001->110
The second result:000->111->100->011
The third result:000->111->010->101
So, there are three kinds of results(110,011,101)
LL quickmod(LL a,LL b)
{
LL ans = ;
if(b==) return ans;
if(b&) ans = (ans*a)%mod;
return ans = (quickmod(a,b/))%mod;
})%mod;
为了降低复杂度。我们现在展开这个递归式子,写一个非递归的程序:
1.如果b是偶数,我们可以记k = a2 mod c,那么求(k)b/2 mod c就可以了。
2.如果b是奇数,我们也可以记k = a2 mod c,那么求
((k)b/2 mod c × a ) mod c =((k)b/2 mod c * a) mod c 就可以了。
上述过程最后一定是b先等于1再等于0,故b=0时候结束程序
下面是模板代码:
LL quickmod(LL a,LL b)
{
LL ans = ;
while(b)
{
if(b&) ans = (ans*a)%mod;
a = (a*a)%mod;
b>>=;
}
return ans;
}
下面介绍一下费马小定理:
a^(p-1) = 1(mod p) p是素数
一般应用有:
A: a^b mod p 在b很大的时候可以先用b = b % (p-1)
B: 在阶乘中减去除法的操作。a^(p-2) = 1/a(mod p)
这个题就应用了B
下面是这个题的ac代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define LL long long
const LL mod = ;
const int N = ; LL f[N]; void init()
{
int i;
f[] = ;
for(i = ; i < N; i++)
f[i] = (f[i-]*i)%mod;
} LL quickmod(LL a, LL b)
{
LL ans = ;
while(b)
{
if(b&){
ans = (ans*a)%mod;
}
b>>=;
a = (a*a)%mod;
}
return ans;
} int main()
{
int n,m,i,j,k,l,r,x,ll,rr;//ll保存最小的1的个数
//l表示上一次的最小的1的个数,rr保存的是最多的1的个数
//r表示的是上一次的最多的1的个数
init();
while(~scanf("%d%d",&n,&m))
{
l = r = ;
for( i = ; i < n; i++)
{
scanf("%d",&x);
if(l>=x) ll = l - x;
else if(r>=x) ll = ((l%)==(x%))?:;
else ll = x-r; if(r+x<=m) rr = r+x;
else if(l+x<=m) rr = (((l+x)%)==(m%)?m:m-);
else rr = *m-(l+x); l = ll;
r = rr;
}
LL sum = ;
for(i = l; i<=r; i+=)
sum+=((f[m]%mod)*(quickmod((f[i]*f[m-i])%mod,mod-)%mod))%mod;
printf("%I64d\n",sum%mod);
}
return ;
}
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define mod 1000000009
#define LL __int64
#define maxn 100000+5 LL f[maxn]; void set()
{
int i;
f[] = ;
for(i = ; i<maxn; i++)
f[i] = (f[i-]*i)%mod;
} LL quickmod(LL a,LL b)
{
LL ans = ;
while(b)
{
if(b&)
{
ans = (ans*a)%mod;
b--;
}
b/=;
a = ((a%mod)*(a%mod))%mod;
}
return ans;
} int main()
{
int n,m,i,j,k,l,r,x,ll,rr;
set();
while(~scanf("%d%d",&n,&m))
{
l = r = ;
for(i = ; i<n; i++)
{
scanf("%d",&x);
//计算最小的1的个数,尽可能多的让1->0
if(l>=x) ll = l-x;//当最小的1个数大于x,把x个1全部翻转
else if(r>=x) ll = ((l%)==(x%))?:;//当l<x<=r,由于无论怎么翻,其奇偶性必定相等,所以看l的奇偶性与x是否相同,相同那么知道最小必定变为0,否则变为1
else ll = x-r;//当x>r,那么在把1全部变为0的同时,还有x-r个0变为1
//计算最大的1的个数,尽可能多的让0->1
if(r+x<=m) rr = r+x;//当r+x<=m的情况下,全部变为1
else if(l+x<=m) rr = (((l+x)%) == (m%)?m:m-);//在r+x>m但是l+x<=m的情况下,也是判断奇偶,同态那么必定在中间有一种能全部变为1,否则至少有一张必定为0
else rr = *m-(l+x);//在l+x>m的情况下,等于我首先把m个1变为了0,那么我还要翻(l+x-m)张,所以最终得到m-(l+x-m)个1 l = ll,r = rr;
}
LL sum = ;
for(i = l; i<=r; i+=)//使用费马小定理和快速幂的方法求和
sum+=((f[m]%mod)*(quickmod((f[i]*f[m-i])%mod,mod-)%mod))%mod;
printf("%I64d\n",sum%mod);
} return ;
}
hdu_4869(费马小定理+快速幂)的更多相关文章
- 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum
Sum Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...
- 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)
题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...
- BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...
- hdu4549(费马小定理 + 快速幂)
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n ...
- HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)
题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description Sample Input 2 Sample Outp ...
- hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)
A/B Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- 牛客训练四:Applese 涂颜色(费马小定理+快速幂)
题目链接:传送门 思路: 考虑每一列有2种颜色,总共有n行,每一行的第一个格确定颜色,由于左右颜色不相同,后面的行就确定了. 所以总共有2^n中结果. 由于n太大,所以要用到费马小定理a^n%mod= ...
- hdu 4704 sum(费马小定理+快速幂)
题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1 4 s(2)=3 1,3 3,1 2,2 s ...
- hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)
题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
随机推荐
- java中的参数传递是按引用传递还是按值传递
最近去面试,有一个面试官问到java中参数传递的问题,感觉自己对于这一块还是理解的不够深.今天我们就一起来学习一下Java中的接口和抽象类.下面是本文的目录大纲: 一 . 什么是按值传递,什么是按引用 ...
- HNOI2013 BZOJ3142 数列
尝试用Markdown写一篇博客 3142: [Hnoi2013]数列 Description 小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的 ...
- SpringMVC底层数据传输校验的方案(修改版)
团队的项目正常运行了很久,但近期偶尔会出现BUG.目前观察到的有两种场景:一是大批量提交业务请求,二是生成批量导出文件.出错后,再执行一次就又正常了. 经过跟踪日志,发现是在Server之间进行jso ...
- Macaca自动化工具之uirecorder脚本录制
UI Recorder功能介绍 支持所有用户行为: 键盘事件, 鼠标事件, alert, 文件上传, 拖放, svg, shadow dom 支持无线native app录制, 基于macaca实现: ...
- JMeter集合点
位置:添加--> 定时器-->Synchronizing Timer 注意:集合点放在所有操作之前. 假设线程组线程数设置的是50个,那么希望50个都准备好一块上,那么集合点中 ...
- base64格式图片转换为FormData对象进行上传
原理:理由ArrayBuffer.Blob和FormData var base64String = /*base64图片串*/; //这里对base64串进行操作,去掉url头,并转换为byte va ...
- mysql也有complex view merging 这个特性(5.6 , 5.7)
出处:黑洞中的奇点 的博客 http://www.cnblogs.com/kelvin19840813/ 您的支持是对博主最大的鼓励,感谢您的认真阅读.本文版权归作者所有,欢迎转载,但请保留该声明. ...
- PHP函数和数组
所有代码可以在https://www.github.com/lozybean/learn_www中查看 PHP函数 PHP中还是有很多函数式编程的影子,函数功能还是比较强大的. 1. 函数用funct ...
- 解决ios手机上传竖拍照片旋转90度问题
html5+canvas进行移动端手机照片上传时,发现ios手机上传竖拍照片会逆时针旋转90度,横拍照片无此问题:Android手机没这个问题. 因此解决这个问题的思路是:获取到照片拍摄的方向角,对非 ...
- PXE+kickstart网络安装CentOS7.4系统及过程中各种报错
环境:关闭防火墙.selinux 注意:虚拟机进行网络安装的话,7.3以后的系统是需要2G以上的内存 [root@kickstart ~]# cat /etc/redhat-release CentO ...