http://acm.hdu.edu.cn/showproblem.php?pid=2680

Choose the best route

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9602    Accepted Submission(s): 3111

Problem Description
One day , Kiki wants to visit one of her friends. As she is liable to carsickness , she wants to arrive at her friend’s home as soon as possible . Now give you a map of the city’s traffic route, and the stations which are near Kiki’s home so that she can take. You may suppose Kiki can change the bus at any station. Please find out the least time Kiki needs to spend. To make it easy, if the city have n bus stations ,the stations will been expressed as an integer 1,2,3…n.
 
Input
There are several test cases. 
Each case begins with three integers n, m and s,(n<1000,m<20000,1=<s<=n) n stands for the number of bus stations in this city and m stands for the number of directed ways between bus stations .(Maybe there are several ways between two bus stations .) s stands for the bus station that near Kiki’s friend’s home.
Then follow m lines ,each line contains three integers p , q , t (0<t<=1000). means from station p to station q there is a way and it will costs t minutes .
Then a line with an integer w(0<w<n), means the number of stations Kiki can take at the beginning. Then follows w integers stands for these stations.
 
Output
The output contains one line for each data set : the least time Kiki needs to spend ,if it’s impossible to find such a route ,just output “-1”.
 
Sample Input
5 8 5
1 2 2
1 5 3
1 3 4
2 4 7
2 5 6
2 3 5
3 5 1
4 5 1
2
2 3
4 3 4
1 2 3
1 3 4
2 3 2
1
1
 
Sample Output
1
-1
 

题解:最短路 注意有重边,这里介绍一种用链表存 的时候可以不用考虑重边,方法就是将所有的边都标记为未访问,然后将其他边的值标记成INF,将开始那条边的值标记成0 ,然后加入n边,每次更新的时候就不用考虑重边了。

这个题因为数据量特别的大,dijk的算法本身是O (n^2)的,查询的时候调用n次dijk所以总共是O(n^3),所以最后会超时,可以逆向思维,因为终点是已知的所以从终点开始dijk一次后找到所有的已知起点中距离最小的点就可以了。

注意这个题中是有向边。

下面是代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 2000
#define M 400000
#define INF 0x1fffffff
struct Edge{
int to ;
int v;
int next;
}edge[M];
int head[N];
int Ecnt;
void init()
{
Ecnt = ;
memset(head,-,sizeof(head));
}
void add(int from , int to ,int v)
{
edge[Ecnt].to = to;
edge[Ecnt].v = v;
edge[Ecnt].next = head[from];
head[from] = Ecnt++;
}
int dist[N];
bool p[N];
void dijk(int s, int n)
{
int i , j , k ;
for(i = ;i <= n ;i++)
{
p[i] = false;
dist[i] = INF;
}
//p[s] = true;
dist[s] = ; for( i = ; i < n ; i++)
{
int Min = INF ;
int k = ;
for( j = ; j <= n ; j++)
{
if(!p[j]&&dist[j]<Min)
{
Min = dist[j];
k = j;
}
}
if(Min == INF ) return ;
p[k] = true;
for(j = head[k]; j != - ; j = edge[j].next)
{
Edge e = edge[j];
if(!p[e.to]&&dist[e.to]>dist[k]+e.v)
dist[e.to] = dist[k]+e.v;
}
}
}
int main()
{
int n , m , s ;
while(~scanf("%d%d%d",&n,&m,&s))
{
init();
for(int i = ;i < m ; i++)
{
int p , q , t ;
scanf("%d%d%d",&p,&q,&t);
add(q,p,t);//逆向扫描,所以逆向加边
}
dijk(s,n);
int ss;
scanf("%d",&ss);
int ans = INF;
for(int i = ;i < ss; i++)
{
int w ;
scanf("%d",&w);
ans = min(ans,dist[w]);
}
if(ans==INF) printf("-1\n");
else printf("%d\n",ans);
}
return ;
}

Choose the best route(最短路)dijk的更多相关文章

  1. HDU2680 Choose the best route 最短路 分类: ACM 2015-03-18 23:30 37人阅读 评论(0) 收藏

    Choose the best route Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  2. hdu-2680 Choose the best route(最短路)

    题目链接: Choose the best route Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K ( ...

  3. hdu2680 Choose the best route 最短路(多源转单源)

    此题中起点有1000个,边有20000条.用链式前向星建图,再枚举起点用SPFA的话,超时了.(按理说,两千万的复杂度应该没超吧.不过一般说计算机计算速度 1~10 千万次/秒.也许拿最烂的计算机来卡 ...

  4. hdu 2680 Choose the best route

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=2680 Choose the best route Description One day , Kiki ...

  5. HDU2680 Choose the best route 2017-04-12 18:47 28人阅读 评论(0) 收藏

    Choose the best route Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Othe ...

  6. hdu 2680 Choose the best route (dijkstra算法 最短路问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2680 Choose the best route Time Limit: 2000/1000 MS ( ...

  7. 最短路问题-- Dijkstra Choose the best route

    Choose the best route Problem Description One day , Kiki wants to visit one of her friends. As she i ...

  8. BZOJ 1266: [AHOI2006]上学路线route(最短路+最小割)

    第一问最短路.第二问,先把最短路的图建出来(边(u,v)满足d[s->u]+d[v->t]+d(u,v)==最短路径长度,就在图中,可以从源点和汇点分别跑一次最短路得到每个点到源点和汇点的 ...

  9. 最短路<dijk>

    题意: 有n个城市,有m条路,给出每条路的出发和结束的城市及长度,求从第一个城市到最后一个城市的最短路.按格式输出. power oj 2443 题解: 标准dijk算法. #include<c ...

随机推荐

  1. IDS 源镜像端口添加

    把核心交换机的G1/2口镜像到目的交换机的G1/4口,两个交换机之间都是连接的24口 1.核心交换机配置 Ruijie# configure tRuijie(config)# vlan 77Ruiji ...

  2. java二维码生成代码

    QRCodeUtil.encode(text, "D:/004.jpg", "D:", true, "exp");// 这个方法的第一个参数 ...

  3. 平方根的C语言实现(三) ——最终程序实现

    版权申明:本文为博主窗户(Colin Cai)原创,欢迎转帖.如要转贴,必须注明原文网址 http://www.cnblogs.com/Colin-Cai/p/7223254.html 作者:窗户 Q ...

  4. 用Go校验下载文件之SHA256

    用GO校验下载文件之SHA256 原来对计算机和网络使用安全这块不够重视,用了N多年盗版的操作系统和办公软件,为了破解使用过各种激活软件,也安装使用过很多别人破解过的软件:网络下载的文件从不校验.慢慢 ...

  5. JDK并发包常用的知识图

    并发包需要注意的知识点 集合类的体系结构

  6. Fiddler 抓包https配置 提示creation of the root certificate was not successful 证书安装不成功

    在使用Fiddler抓包时,我们有时需要抓https协议的包,这种需要配置一下 开启监控https才可以 首先 找到Tools——>Options 在弹出的菜单中 选择https项  勾选捕捉h ...

  7. JavaScript的DOM编程--03--读写属性节点

    读写属性节点: 1)可以直接通过 cityNode.id 这样的方式来获取和设置属性节点的值 2)通过元素节点的 getAttributeNode 方法来获取属性节点, 然后在通过 nodeValue ...

  8. 由浅入深理解Java线程池及线程池的如何使用

    前言 多线程的异步执行方式,虽然能够最大限度发挥多核计算机的计算能力,但是如果不加控制,反而会对系统造成负担.线程本身也要占用内存空间,大量的线程会占用内存资源并且可能会导致Out of Memory ...

  9. Oracle COMMIT语句的处理顺序

    Oracle COMMIT语句相信大家都有一定的了解,下面就为您介绍Oracle COMMIT语句的处理步骤,希望对您能有所帮助. Oracle COMMIT语句处理顺序 当事务提交时,Oracle分 ...

  10. bootstrapru软件官网

    一    bootstrap:http://v3.bootcss.com/ 二   起步:http://v3.bootcss.com/getting-started/ 三    全局css样式:htt ...