Description

You have an array a[1], a[2], ..., a[n], containing distinct integers from 1 to n. Your task is to sort this array in increasing order with the following operation (you may need to apply it multiple times):

  • choose two indexes, i and j (1 ≤ i < j ≤ n; (j - i + 1) is a prime number);
  • swap the elements on positions i and j; in other words, you are allowed to apply the following sequence of assignments: tmp = a[i], a[i] = a[j], a[j] = tmp (tmp is a temporary variable).

You do not need to minimize the number of used operations. However, you need to make sure that there are at most 5n operations.

Input

The first line contains integer n(1 ≤ n ≤ 105). The next line contains n distinct integers a[1], a[2], ..., a[n](1 ≤ a[i] ≤ n).

Output

In the first line, print integer k(0 ≤ k ≤ 5n) — the number of used operations. Next, print the operations. Each operation must be printed as "ij" (1 ≤ i < j ≤ n; (j - i + 1) is a prime).

If there are multiple answers, you can print any of them.

Sample Input

Input
3
3 2 1
Output
1
1 3
Input
2
1 2
Output
0
Input
4
4 2 3 1
Output
3
2 4
1 2
2 4 题目大意:有n个数的序列,通过交换使其变得有序,交换的原则是每次交换的数字ai和aj,(j-i+1)必须是质数,要求在5n步内完成。
思路:很容易考虑到歌德巴赫猜想。该猜想虽未证明,不过科学家目前还未找出反例,在本题数据范围有限大的情况下是适用的。由猜想可得,每个大于等于5的数都可以有三个质数相加获得,而2,3都是质数,4=2+2,所以所有大于等于2的数都可以用质数表示。所以无论i,j多少,每次交换i,j都可以在三步之内获得。已知把一个无序数列变成有序数列最多需要交换n-1次,所以答案小于等于3(n-1),小于等于5n。
/*
* Author: Joshua
* Created Time: 2014年07月20日 星期日 20时16分13秒
* File Name: c.cpp
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 100005
int a[maxn],l[maxn<<],r[maxn<<];
bool f[maxn];
int n,ans;
void primeNumber()
{
memset(f,true,sizeof(f));
f[]=f[]=false;
for (int i=;i<maxn;++i)
if (f[i])
for (int j=i+i;j<maxn;j+=i)
f[j]=false;
} void change(int x,int y)
{
if (x==y) return;
if (x>y) swap(x,y);
for (int i=y;i>x;i--)
if (f[i-x+])
{
swap(a[i],a[x]);
l[++ans]=x;
r[ans]=i;
change(i,y);
break;
}
} void solve()
{
ans=;
for (int i=;i<=n;++i)
scanf("%d",&a[i]);
for (int i=;i<=n;++i)
while (a[i]!=i) change(i,a[i]);
printf("%d\n",ans);
for (int i=;i<=ans;++i)
printf("%d %d\n",l[i],r[i]);
}
int main()
{ primeNumber();
while (scanf("%d",&n)==)
solve(); return ;
}

CodeForces 432C Prime Swaps的更多相关文章

  1. Codefoces 432C Prime Swaps(数论+贪心)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u011328934/article/details/26094917 题目连接:Codefoces ...

  2. codeforces C. Prime Swaps

    题意:给你n个数,然后在交换次数小于等于5×n的情况下使得这个序列变成升序,输出次数; 思路:哥德巴赫猜想:任何一个大于5的数都可以写成三个质数之和.尽可能的找大的素数,从1的位置向右逐步的调整,每一 ...

  3. Codefoces 432 C. Prime Swaps

    哥德巴赫猜想: 任一大于2的偶数,都可表示成两个素数之和. 任一大于5的整数都可写成三个质数之和. 贪心取尽可能大的素数..... C. Prime Swaps time limit per test ...

  4. Codeforces H. Prime Gift(折半枚举二分)

    题目描述: Prime Gift time limit per test 3.5 seconds memory limit per test 256 megabytes input standard ...

  5. Codeforces Round #246 (Div. 2) C. Prime Swaps(贪心,数论)

    题目链接:http://codeforces.com/contest/432/problem/C 首先由题意分析出:这些数是从1到n且各不相同,所以最后结果肯定是第i位的数就是i. 采用这样一种贪心策 ...

  6. CodeForces 691D:Swaps in Permutation(并查集)

    http://codeforces.com/contest/691/problem/D D. Swaps in Permutation   You are given a permutation of ...

  7. [Codeforces 1178D]Prime Graph (思维+数学)

    Codeforces 1178D (思维+数学) 题面 给出正整数n(不一定是质数),构造一个边数为质数的无向连通图(无自环重边),且图的每个节点的度数为质数 分析 我们先构造一个环,每个点的度数都是 ...

  8. Codeforces 912E - Prime Gift

    912E - Prime Gift 思路: 折半枚举+二分check 将素数分成两个集合(最好按奇偶位置来,保证两集合个数相近),这样每个集合枚举出来的小于1e18的积个数小于1e6. 然后二分答案, ...

  9. Codeforces 912E Prime Gift(预处理 + 双指针 + 二分答案)

    题目链接 Prime Gift 题意  给定一个素数集合,求第k小的数,满足这个数的所有质因子集合为给定的集合的子集. 保证答案不超过$10^{18}$ 考虑二分答案. 根据折半的思想,首先我们把这个 ...

随机推荐

  1. 【转载】 ISO14229系列之二:诊断指令格式和相关概念

    转载链接:http://www.cnblogs.com/autogeek/p/4458658.html 1. 简单的通信机制 其实诊断通信的机制很简单,可以类比client-server通信方式,即客 ...

  2. kotlin-30分钟快速入门

    1.定义变量 在kotlin中,通过var 或者 val 来定义,区别就是 val定义的变量只能读不能修改,var则可以修改. val a:Int = 1 //等价于java: final int i ...

  3. (转)logback 打印Mybitis中的sql执行过程

    场景:在程序开发过程中经常需要跟踪程序中sql语句的执行过程,在控制台打印出sql语句和对应的参数传递就能够更快的定位错误! 原文出处:http://www.cnblogs.com/beiyeren/ ...

  4. java对Microsoft Document的操作--->对Excel的操作

    起初,自己想对网站上爬取一些数据来写到Excel表格中,便在网上找了找java操作Excel接口,了解到Apache的POI接口可以对微软的文档进行操作,WIKI搜索的结果如下, HSSF - 提供读 ...

  5. Vue学习记录第一篇——Vue入门基础

    前面的话 Vue中文文档写得很好,界面清爽,内容翔实.但文档毕竟不是教程,文档一上来出现了大量的新概念,对于新手而言,并不友好.个人还是比较喜欢类似于<JS高级程序设计>的风格,从浅入深, ...

  6. Python数据网络采集5--处理Javascript和重定向

    Python数据网络采集5--处理Javascript和重定向 到目前为止,我们和网站服务器通信的唯一方式,就是发出HTTP请求获取页面.有些网页,我们不需要单独请求,就可以和网络服务器交互(收发信息 ...

  7. JavaScript基本数据类型

    JavaScript基本数据类型 在JavaScript种一共有6种数据类型:Null.Undefined.Boolean.String.Number.Object.其中Object是一种复杂数据类型 ...

  8. 倒水问题(Fill,UVA 10603) lrj白书 p202

    看着lrj的代码自己敲了一遍,还没调试成功.... 有时间再进行完善 /* 状态start到各个状态u1,u2,u3..... 的倒水量分别为u1.dist,u2.dist,u3.dist.... * ...

  9. LVS-负载均衡集群部署

    简介:LVS是一种集群技术,采用IP负载均衡技术和基于内容请求分发技术,调度器具有很好的吞吐量,将请求均衡的转移到不同服务器上执行,且调度器自动屏蔽掉服务器的故障,从而将一组服务器构成一个高性能,高可 ...

  10. akoj-1073- Let the Balloon Rise

    Let the Balloon Rise Time Limit:1000MS  Memory Limit:65536K Total Submit:92 Accepted:58 Description ...