【UVA 1380】 A Scheduling Problem (树形DP)
Description
There is a set of jobs, say x1, x2,..., xn <tex2html_verbatim_mark>, to be scheduled. Each job needs one day to complete. Your task is to schedule the jobs so that they can be nished in a minimum number of days. There are two types of constraints: Conflict constraints and Precedence constraints.
Conflict constraints: Some pairs of jobs cannot be done on the same day. (Maybe job xi <tex2html_verbatim_mark>and job xj <tex2html_verbatim_mark>need to use the same machine. So they must be done in different dates).
Precedence constraints: For some pairs of jobs, one needs to be completed before the other can start. For example, maybe job xi <tex2html_verbatim_mark>cannot be started before job xj <tex2html_verbatim_mark>is completed.
The scheduling needs to satisfy all the constraints.
To record the constraints, we build a graph G <tex2html_verbatim_mark>whose vertices are the jobs: x1, x2,..., xn <tex2html_verbatim_mark>. Connect xi <tex2html_verbatim_mark>and xj <tex2html_verbatim_mark>by an undirected edge if xi <tex2html_verbatim_mark>and xj <tex2html_verbatim_mark>cannot be done on the same day. Connect xi <tex2html_verbatim_mark>and xj <tex2html_verbatim_mark>by a directed edge from xi <tex2html_verbatim_mark>to xj <tex2html_verbatim_mark>if xi <tex2html_verbatim_mark>needs to be completed before xj <tex2html_verbatim_mark>starts.
If the graph is complicated, the scheduling problem is very hard. Now we assume that for our problems, the constraints are not very complicated: The graph G <tex2html_verbatim_mark>we need to consider are always trees (after omitting the directions of the edges). Your task is to nd out the number of days needed in an optimal scheduling for such inputs. You can use the following result:
If G <tex2html_verbatim_mark>is a tree, then the number of days needed is either k <tex2html_verbatim_mark>or k + 1 <tex2html_verbatim_mark>, where k <tex2html_verbatim_mark>is the maximum number of vertices contained in a directed path of G <tex2html_verbatim_mark>, i.e., a path P = (x1, x2,..., xk) <tex2html_verbatim_mark>, where for each i = 1, 2,..., k - 1 <tex2html_verbatim_mark>, there is a directed edge from xi <tex2html_verbatim_mark>to xi+1 <tex2html_verbatim_mark>.
Figure 1 below is such an example. There are six jobs: 1, 2, 3, 4, 5, 6. From this figure, we know that job 1 and job 2 must be done in different dates. Job 1 needs to be done before job 3, job 3 before job 5, job 2 before job 4 and job 4 before job 6. It is easy to verify that the minimum days to finish all the jobs is 4 days. In this example, the maximum number k <tex2html_verbatim_mark>of vertices contained in a directed path is 3.
<tex2html_verbatim_mark>
Figure 1: ExampleInput
The input consists of a number of trees (whose edges may be directed or undirected), say T1, T2,..., Tm <tex2html_verbatim_mark>, where m
20 <tex2html_verbatim_mark>. Each tree has at most 200 vertices. We represent each tree as a rooted tree (just for convenience of presentation, the root is an arbitrarily chosen vertex). Information of each of the trees are contained in a number of lines. Each line starts with a vertex (which is a positive integer) followed by all its sons (which are also positive integers), then followed by a 0. Note that 0 is not a vertex, and it indicates the end of that line. Now some of the edges are directed. The direction of an edge can be from father to son, and can also be from son to father. If the edge is from father to son, then we put a letter `` d" after that son (meaning that it is a downward edge). If the edge is from son to father, then we put a letter `` u" after that son (meaning that it is an upward edge). If the edge is undirected then we do not put any letter after the son.
The first case of the sample input below is the example in Figure 1.
Consecutive vertices (numbers or numbers with a letter after it) in a line are separated by a single space. A line containing a single 0 means the end of that tree. The next tree starts in the next line. Two consecutive lines of single 0 means the end of the input.
Output
The output contains one line for each test case. Each line contains a number, which is the minimum number of days to finish all the jobs in that test case.
Sample Input
1 2 3d 0
2 4d 0
3 5d 0
4 6d 0
0
1 2d 3u 4 0
0
1 2d 3 0
2 4d 5d 10 0
3 6d 7d 11 0
6 8d 9 12 0
0
1 2 3 4 0
2 5d 0
3 6d 0
4 7d 0
5 8d 0
6 9d 0
7 10d 0
0
0Sample Output
4
3
4
3
【题意】
有n个恰好需要一天完成的任务,要求用最少时间做完。任务可以并行完成并行完成,但必须满足一些约束。约束是给一个图,A-B表示A、B不能同一天完成。A->B表示先做A才能做B。输入保证约束图是一棵树某些边定向而成的,问完成所有任务的最少时间。 【分析】
紫书上的题,挺难的。
二分答案x,判断是否可以给无向边定向,使得最长链点数不超过x。
f[i]表示以i为根的子树内全部边定向后,最长链点数不超过x的前提下,形如“后代到i”的最长链的最小值,同理定义g[i]为形如“i到后代”的最长链的最小值。
设y为i的某个孩子。
转化无向边的过程分为两种情况:
a. 如果是有向边,则经过子树的根结点的最值贡献为f+g+1。
b. 如果一个结点a的子结点存在无向边,求f[i]时,目的是f[i]+g[i]+1<=x的前提下f[i]最小。首先把所有没有定向的f(y)排序,假设把第p小的定位向上,那么比p小的也定为向上百利而无一害。然后剩下的变成向下,判断这样的f是否成立,不成立f为INF。
这种方法时间复杂度:n^2*logn
代码如下:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 210
#define INF 0xfffffff struct node
{
int x,y,next,p;
}t[*Maxn];int len; int first[Maxn],n; void ins(int x,int y,int p)
{
t[++len].x=x;t[len].y=y;t[len].p=p;
t[len].next=first[x];first[x]=len;
} int mymax(int x,int y) {return x>y?x:y;}
int mymin(int x,int y) {return x<y?x:y;} bool init()
{
int x,y;
char c;
len=;
memset(first,,sizeof(first));
n=;
while()
{
scanf("%d",&x);getchar();
if(x==) break;
n=x;
while()
{
scanf("%d",&y);
n=mymax(n,y);
if(y==) {getchar();break;}
scanf("%c",&c);
if(c=='u'||c=='d')
{
if(c=='d') ins(x,y,),ins(y,x,-);
else ins(y,x,),ins(x,y,-);
scanf("%c",&c);
}
else {ins(x,y,);ins(y,x,);}
}
}
if(n==) return ;
return ;
} int f[Maxn],g[Maxn]; struct hp
{
int x,y;
}a[Maxn]; bool cmp(hp x,hp y) {return x.x<y.x;}
bool cmp2(hp x,hp y) {return x.y<y.y;} bool dp(int x,int fa,int now)
{
f[x]=g[x]=INF;
int mxf=-,mxg=-;
for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa)
{
int y=t[i].y;
dp(y,x,now);
if(f[y]>=INF) return ;
}
int cnt=;
for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa)
{
int y=t[i].y;
if(t[i].p==)
{
a[++cnt].x=f[y];
a[cnt].y=g[y];
}
else if(t[i].p==-) mxf=mymax(mxf,f[y]);
else mxg=mymax(mxg,g[y]);
}
if(cnt==)
{
if(mxf+mxg+<=now)
f[x]=mymin(f[x],mxf+),g[x]=mymin(g[x],mxg+);
}
else
{
sort(a+,a++cnt,cmp);
int pg=mxg;
for(int i=cnt;i>=;i--)
{
int nx=mymax(a[i].x,mxf);
if(nx+mxg+<=now) f[x]=nx+;
mxg=mymax(mxg,a[i].y);
}
// if(mxg+mxf<=now) f[x]=mxf+1;
sort(a+,a++cnt,cmp2);
mxg=pg;
for(int i=cnt;i>=;i--)
{
int nx=mymax(a[i].y,mxg);
if(nx+mxf+<=now) g[x]=nx+;
mxf=mymax(mxf,a[i].x);
}
// if(mxf+2<=now) g[x]=mxg+1;
}
return f[x]<INF;
} int ffind(int l,int r)
{
while(l<r)
{
int mid=(l+r)>>;
if(dp(,,mid)) r=mid;
else l=mid+;
}
printf("%d\n",l);
} int main()
{
a[].x=a[].y=-;
while()
{
bool z=init();
if(z==) break;
ffind(,n);
}
return ;
}
[UVA1380]
来一份GDXB的详细题解:
http://www.cnblogs.com/KonjakJuruo/p/5969831.html
balabalabala...
2016-10-17 20:26:08
然而,事实上,因为n很小,有更简单的方法!!!n^3过了。。。
dp[i][j]表示计算i这棵树,且i在第j天完成,的最短时间。
dp[i][j]=max(dp[i][j],min(dp[y][k])) [y是i的孩子,k是y的可行时间]
呵呵,100年打第一种方法,第二种方法秒A。呵呵~~ 2016-10-17 21:00:06
【UVA 1380】 A Scheduling Problem (树形DP)的更多相关文章
- 【暑假】[深入动态规划]UVa 1380 A Scheduling Problem
UVa 1380 A Scheduling Problem 题目: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=41557 ...
- UVA 1380 A Scheduling Problem
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- [HDU 5293]Tree chain problem(树形dp+树链剖分)
[HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...
- UVA 10253 Series-Parallel Networks (树形dp)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Series-Parallel Networks Input: standard ...
- HDU 5293 Annoying problem 树形dp dfs序 树状数组 lca
Annoying problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 Description Coco has a tree, w ...
- HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...
- hdu5293 Tree chain problem 树形dp+线段树
题目:pid=5293">http://acm.hdu.edu.cn/showproblem.php?pid=5293 在一棵树中,给出若干条链和链的权值.求选取不相交的链使得权值和最 ...
- UVa 12186 - Another Crisis(树形DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVa 1218 - Perfect Service(树形DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
随机推荐
- Android 自学之表格布局 TableLayout
表格布局(TableLayout),表格布局采用行.列的形式来管理UI组件,TableLayout并不需要明确的声明多少行,多少列,而是通过TableRow.其他组件来控制表格的行数和列数. 每次想T ...
- PHP 获取当前日期的上个月的日期
获取当前日期的上个月的日期 <?php /** *参考有: *http://www.oschina.net/code/snippet_96541_4015 *http://stackoverfl ...
- ACTIVEX 重新安装与卸载
1.卸载工具 SREngLdr.EXE,打开后执行 系统修复->浏览器加载项,找到对应的ACTIVEX,点击删除.OK 2.开发人员如遇到ACTIVEX版本更新.可在OBJECT 里加入更高版本 ...
- ios应用来电监听
先导入这两个头文件,库文件不用导可以 #import <CoreTelephony/CTCallCenter.h> #import <CoreTelephony/CTCall.h&g ...
- Objective-C 获取当前执行函数的名称
当打印日志时为了方便跟踪,需要抛出当前执行函数的名称,一样可以使用c++的宏__FUNCTION__实现. @implementation CTPerson -(void)show { NSLog(@ ...
- java新手笔记14 类继承示例
1.Person package com.yfs.javase; public class Person { private String name; private int age; private ...
- Codevs 2449 骑士精神 2005年省队选拔赛四川
2449 骑士精神 2005年省队选拔赛四川 时间限制: 1 s 空间限制: 128000 KB 题目等级 : **大师 Master** 题目描述 Description 在一个5×5的棋盘上有12 ...
- 第4章 管道与FIFO
4.1 概述 管道只在亲缘进程间使用,FIFO在任意进程间使用 4.2 管道 #include <unistd.h> ]) fd[0]用来读管道,fd[1]用来写管道 1)命令who | ...
- 理解Http协议(一)
本文对Http协议进行了简要的描述,说明了其用途的广泛性:通过代码对Http连接和Http请求消息的发送进行实现,希望能将这些抽象的过程直观的显示出来:最后对HttpURL和Http协议中“资源”这些 ...
- MyBatis 拦截器 (实现分页功能)
由于业务关系 巴拉巴拉巴拉 好吧 简单来说就是 原来的业务是 需要再实现类里写 selectCount 和selectPage两个方法才能实现分页功能 现在想要达到效果是 只通过一个方法就可以实现 也 ...