描述


http://poj.org/problem?id=2385

两棵苹果树,给定一个时间t,1~t每分钟有一棵树掉苹果,牛起始在#1树,最多换w次位置,问最多接到多少苹果.

Apple Catching
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10522   Accepted: 5106

Description

It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds.

Each minute, one of the two apple trees drops an apple. Bessie,
having much practice, can catch an apple if she is standing under a tree
from which one falls. While Bessie can walk between the two trees
quickly (in much less than a minute), she can stand under only one tree
at any time. Moreover, cows do not get a lot of exercise, so she is not
willing to walk back and forth between the trees endlessly (and thus
misses some apples).

Apples fall (one each minute) for T (1 <= T <= 1,000) minutes.
Bessie is willing to walk back and forth at most W (1 <= W <= 30)
times. Given which tree will drop an apple each minute, determine the
maximum number of apples which Bessie can catch. Bessie starts at tree
1.

Input

* Line 1: Two space separated integers: T and W

* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.

Output

* Line 1: The maximum number of apples Bessie can catch without walking more than W times.

Sample Input

7 2
2
1
1
2
2
1
1

Sample Output

6

Hint

INPUT DETAILS:

Seven apples fall - one from tree 2, then two in a row from tree 1,
then two in a row from tree 2, then two in a row from tree 1. Bessie is
willing to walk from one tree to the other twice.

OUTPUT DETAILS:

Bessie can catch six apples by staying under tree 1 until the first
two have dropped, then moving to tree 2 for the next two, then returning
back to tree 1 for the final two.

Source

分析


用f[i][j][k]表示第i分钟,已经移动了j次,在#k树下的最优解.

注意:

1.有些时候动规写成+的形式比-的形式方便

 #include<cstdio>
#include<algorithm>
using std :: max; const int maxt=,maxw=;
int t,w;
int tree[maxt],f[maxt][maxw][]; inline int move(int x) { return x== ? : ; } void solve()
{
int ans=;
for(int i=;i<t;i++)
{
for(int j=;j<=w;j++)
{
for(int k=;k<=;k++)
{
if(k==tree[i+])
{
f[i+][j][k]=max(f[i+][j][k],f[i][j][k]+);
f[i+][j+][move(k)]=max(f[i+][j+][move(k)],f[i][j][k]);
}
else
{
f[i+][j][k]=max(f[i+][j][k],f[i][j][k]);
f[i+][j+][move(k)]=max(f[i+][j+][move(k)],f[i][j][k]+);
}
}
}
}
for(int i=;i<=t;i++)
{
for(int j=;j<=w;j++)
{
for(int k=;k<=;k++)
{
ans=max(ans,f[i][j][k]);
}
}
}
printf("%d\n",ans);
} void init()
{
scanf("%d%d",&t,&w);
for(int i=;i<=t;i++)
{
scanf("%d",tree+i);
}
if(tree[]==) f[][][]=;
else f[][][]=;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("apple.in","r",stdin);
freopen("apple.out","w",stdout);
#endif
init();
solve();
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
#endif
return ;
}

POJ_2385_Apple_Catching_(动态规划)的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. [02] Oracle简单单行函数(字符+数值+日期+转换+通用)

    1. 字符函数 --upper(str), lower(str):将str转换成大,小写 select upper('hello') as x1, lower('HELlo') as x2 from ...

  2. oracle级联删除 触发器

    CREATE TABLE STUDENT( --创建学生表  ID NUMBER(10) PRIMARY KEY,   --主键ID  SNAME VARCHAR2(20),  CLASSNAME V ...

  3. 对比iOS中的四种数据存储

    来自于大牛的文章给大家分享下 :http://www.infoq.com/cn/articles/data-storage-in-ios/

  4. OC与Swift的区别三(条件语句)

    11.swift中的switch结构 区别一: oc中switch条件只可以放整数 swift中switch条件可以放几乎任何数据类型 区别二: oc中每一个case中应有break,如果没有brea ...

  5. Cogs 1298.通讯问题

    1298.通讯问题 ★ 输入文件:jdltt.in 输出文件:jdltt.out 简单对比 时间限制:1 s 内存限制:128 MB [题目描述] 一个篮球队有n个篮球队员,每个队员都有联系方式(如电 ...

  6. bzoj1090:[SCOI2003]字符串折叠

    思路:区间dp,令f[l][r]表示l到r的答案,于是f[l][r]=min(f[l][mid],f[mid+1][r]),如果能折叠f[l][r]=min(f[l][r],f[l][l+len-1] ...

  7. 在远程服务器上完成本地设备的程序烧写和调试(基于vivado ,SDK软件)

    在使用vivado和SDK进行设计开发的时候,通常需要登录到远程服务器上进行,但是会遇到一个问题就是,所使用的开发板通常是连接在自己的电脑上(local-PC),那要怎么才能让运行在服务器上的设计软件 ...

  8. python 自动化之路 day 06

    ATM作业讲解: 数据访问层 业务逻辑层 time & datetime模块 import time # print(time.clock()) #返回处理器时间,3.3开始已废弃 , 改成了 ...

  9. 转(sphinx 多索引使用 方法 )

    1 http://blog.csdn.net/adparking/article/details/7080278  文章不错 总结 1.索引合并问题,前面已经解释过,两个索引合并时,都要读入,然后还要 ...

  10. ubuntu vim之php函数提示

    参考文献:http://www.feiyan.info/32.html 折腾半天 原来是phpfunclist.txt不正确...... vim的配置在~/.vimrc (既你的home主目录 ,例如 ...