描述


http://poj.org/problem?id=2385

两棵苹果树,给定一个时间t,1~t每分钟有一棵树掉苹果,牛起始在#1树,最多换w次位置,问最多接到多少苹果.

Apple Catching
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10522   Accepted: 5106

Description

It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds.

Each minute, one of the two apple trees drops an apple. Bessie,
having much practice, can catch an apple if she is standing under a tree
from which one falls. While Bessie can walk between the two trees
quickly (in much less than a minute), she can stand under only one tree
at any time. Moreover, cows do not get a lot of exercise, so she is not
willing to walk back and forth between the trees endlessly (and thus
misses some apples).

Apples fall (one each minute) for T (1 <= T <= 1,000) minutes.
Bessie is willing to walk back and forth at most W (1 <= W <= 30)
times. Given which tree will drop an apple each minute, determine the
maximum number of apples which Bessie can catch. Bessie starts at tree
1.

Input

* Line 1: Two space separated integers: T and W

* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.

Output

* Line 1: The maximum number of apples Bessie can catch without walking more than W times.

Sample Input

7 2
2
1
1
2
2
1
1

Sample Output

6

Hint

INPUT DETAILS:

Seven apples fall - one from tree 2, then two in a row from tree 1,
then two in a row from tree 2, then two in a row from tree 1. Bessie is
willing to walk from one tree to the other twice.

OUTPUT DETAILS:

Bessie can catch six apples by staying under tree 1 until the first
two have dropped, then moving to tree 2 for the next two, then returning
back to tree 1 for the final two.

Source

分析


用f[i][j][k]表示第i分钟,已经移动了j次,在#k树下的最优解.

注意:

1.有些时候动规写成+的形式比-的形式方便

 #include<cstdio>
#include<algorithm>
using std :: max; const int maxt=,maxw=;
int t,w;
int tree[maxt],f[maxt][maxw][]; inline int move(int x) { return x== ? : ; } void solve()
{
int ans=;
for(int i=;i<t;i++)
{
for(int j=;j<=w;j++)
{
for(int k=;k<=;k++)
{
if(k==tree[i+])
{
f[i+][j][k]=max(f[i+][j][k],f[i][j][k]+);
f[i+][j+][move(k)]=max(f[i+][j+][move(k)],f[i][j][k]);
}
else
{
f[i+][j][k]=max(f[i+][j][k],f[i][j][k]);
f[i+][j+][move(k)]=max(f[i+][j+][move(k)],f[i][j][k]+);
}
}
}
}
for(int i=;i<=t;i++)
{
for(int j=;j<=w;j++)
{
for(int k=;k<=;k++)
{
ans=max(ans,f[i][j][k]);
}
}
}
printf("%d\n",ans);
} void init()
{
scanf("%d%d",&t,&w);
for(int i=;i<=t;i++)
{
scanf("%d",tree+i);
}
if(tree[]==) f[][][]=;
else f[][][]=;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("apple.in","r",stdin);
freopen("apple.out","w",stdout);
#endif
init();
solve();
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
#endif
return ;
}

POJ_2385_Apple_Catching_(动态规划)的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. PHP中的魔术方法总结

    1.__get.__set这两个方法是为在类和他们的父类中没有声明的属性而设计的__get( $property ) 当调用一个未定义的属性时访问此方法__set( $property, $value ...

  2. ios PromiseKit

    简介: 高级开发是高度异步的,PromiseKit收集了一些帮助函数,让我们开发过程中使用的典型异步模式更加令人愉悦. 1.通过pod安装promisekit: 2. promise.h介绍 @imp ...

  3. phaser源码解析(三) Phaser.Utils类下isPlainObject方法

    /** * #这是一个对jQuery.isPlainObject(obj)稍加修改的方法. 一个 普通对象 obj.toString() => "[object Object]&quo ...

  4. VB,VBS,VBA,ASP可引用的库参考

    文件系统对象相关: ("SCRIPTING.FILESYSTEMOBJECT") 字典相关: ("SCRIPTING.DICTIONARY") 脚本外壳相关:  ...

  5. java新手笔记23 异常

    1.import package com.yfs.javase; import java.util.Scanner; //import java.lang.String;//默认导入 public c ...

  6. js【输入一个日期】返回【当前12个月每月最后一天】

    Date.prototype.Format = function (fmt) { //author: meizz var o = { "M+": this.getMonth() + ...

  7. IOS 学习笔记 2015-04-08 OC-NSUserDefaults 持久化对象

    NSUserDefaults适合存储轻量级的本地数据,比如要保存一个登陆界面的数据,用户名.密码之类的; NSUserDefaults被设计用来存储设备和应用的配置信息,它通过一个工厂方法返回默认的. ...

  8. 【原创】Android开发之ADB及ADB SHELl命令的应用

    adb的全称为Android Debug Bridge,就是起到调试桥的作用.通过adb我们可以在Eclipse中方面通过DDMS来调试Android程序,说白了就是debug工具.adb的工作方式比 ...

  9. sar监控系统状态

    sar 命令很强大,它可以监控系统所有资源状态,比如平均负载.网卡流量.磁盘状态.内存使用等等. 它不同于其他系统状态监控工具的地方在于,它可以打印历史信息,可以显示当天从零点开始到当前时刻的系统状态 ...

  10. React组件三

    <script> <!-- getDefalutPros 设置组件的默认值--> <!--var Mytitle=React.createClass({ getDefau ...