https://sourceware.org/binutils/docs/as/ARM-Options.html

https://gcc.gnu.org/onlinedocs/gcc-4.5.3/gcc/i386-and-x86_002d64-Options.html

9.4.1 Options

-mcpu=processor[+extension...]
This option specifies the target processor. The assembler will issue an error message if an attempt is made to assemble an instruction which will not execute on the target processor. The following processor names are recognized: arm1, arm2, arm250, arm3, arm6, arm60, arm600, arm610, arm620, arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700, arm700i, arm710, arm710t, arm720, arm720t, arm740t, arm710c, arm7100, arm7500, arm7500fe, arm7t, arm7tdmi, arm7tdmi-s, arm8, arm810, strongarm, strongarm1, strongarm110, strongarm1100, strongarm1110, arm9, arm920, arm920t, arm922t, arm940t, arm9tdmi, fa526 (Faraday FA526 processor), fa626 (Faraday FA626 processor), arm9e, arm926e, arm926ej-s, arm946e-r0, arm946e, arm946e-s, arm966e-r0, arm966e, arm966e-s, arm968e-s, arm10t, arm10tdmi, arm10e, arm1020, arm1020t, arm1020e, arm1022e, arm1026ej-s, fa606te (Faraday FA606TE processor), fa616te (Faraday FA616TE processor), fa626te (Faraday FA626TE processor), fmp626 (Faraday FMP626 processor), fa726te (Faraday FA726TE processor), arm1136j-s, arm1136jf-s, arm1156t2-s, arm1156t2f-s, arm1176jz-s, arm1176jzf-s, mpcore, mpcorenovfp, cortex-a5, cortex-a7, cortex-a8, cortex-a9, cortex-a15, cortex-r4, cortex-r4f, cortex-r5, cortex-r7, cortex-m4, cortex-m3, cortex-m1, cortex-m0, cortex-m0plus, ep9312 (ARM920 with Cirrus Maverick coprocessor), i80200 (Intel XScale processor) iwmmxt (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor) and xscale. The special name all may be used to allow the assembler to accept instructions valid for any ARM processor.

In addition to the basic instruction set, the assembler can be told to accept various extension mnemonics that extend the processor using the co-processor instruction space. For example, -mcpu=arm920+maverick is equivalent to specifying -mcpu=ep9312.

Multiple extensions may be specified, separated by a +. The extensions should be specified in ascending alphabetical order.

Some extensions may be restricted to particular architectures; this is documented in the list of extensions below.

Extension mnemonics may also be removed from those the assembler accepts. This is done be prepending no to the option that adds the extension. Extensions that are removed should be listed after all extensions which have been added, again in ascending alphabetical order. For example, -mcpu=ep9312+nomaverick is equivalent to specifying -mcpu=arm920.

The following extensions are currently supported: crypto (Cryptography Extensions for v8-A architecture, implies fp+simd), fp (Floating Point Extensions for v8-A architecture), idiv (Integer Divide Extensions for v7-A and v7-R architectures), iwmmxt, iwmmxt2, maverick, mp (Multiprocessing Extensions for v7-A and v7-R architectures), os (Operating System for v6M architecture), sec (Security Extensions for v6K and v7-A architectures), simd (Advanced SIMD Extensions for v8-A architecture, implies fp), virt (Virtualization Extensions for v7-A architecture, implies idiv), and xscale.

-march=architecture[+extension...]
This option specifies the target architecture. The assembler will issue an error message if an attempt is made to assemble an instruction which will not execute on the target architecture. The following architecture names are recognized: armv1, armv2, armv2a, armv2s, armv3, armv3m, armv4, armv4xm, armv4t, armv4txm, armv5, armv5t, armv5txm, armv5te, armv5texp, armv6, armv6j, armv6k, armv6z, armv6zk, armv6-m, armv6s-m, armv7, armv7-a, armv7ve, armv7-r, armv7-m, armv7e-m, armv8-a, iwmmxt and xscale. If both -mcpu and -march are specified, the assembler will use the setting for -mcpu.

The architecture option can be extended with the same instruction set extension options as the -mcpu option.

-mfpu=floating-point-format
This option specifies the floating point format to assemble for. The assembler will issue an error message if an attempt is made to assemble an instruction which will not execute on the target floating point unit. The following format options are recognized: softfpa, fpe, fpe2, fpe3, fpa, fpa10, fpa11, arm7500fe, softvfp, softvfp+vfp, vfp, vfp10, vfp10-r0, vfp9, vfpxd, vfpv2, vfpv3, vfpv3-fp16, vfpv3-d16, vfpv3-d16-fp16, vfpv3xd, vfpv3xd-d16, vfpv4, vfpv4-d16, fpv4-sp-d16, fp-armv8, arm1020t, arm1020e, arm1136jf-s, maverick, neon, neon-vfpv4, neon-fp-armv8, and crypto-neon-fp-armv8.

In addition to determining which instructions are assembled, this option also affects the way in which the .double assembler directive behaves when assembling little-endian code.

The default is dependent on the processor selected. For Architecture 5 or later, the default is to assembler for VFP instructions; for earlier architectures the default is to assemble for FPA instructions.

-mthumb
This option specifies that the assembler should start assembling Thumb instructions; that is, it should behave as though the file starts with a .code 16 directive.

-mthumb-interwork
This option specifies that the output generated by the assembler should be marked as supporting interworking.

-mimplicit-it=never
-mimplicit-it=always
-mimplicit-it=arm
-mimplicit-it=thumb
The -mimplicit-it option controls the behavior of the assembler when conditional instructions are not enclosed in IT blocks. There are four possible behaviors. If never is specified, such constructs cause a warning in ARM code and an error in Thumb-2 code. If always is specified, such constructs are accepted in both ARM and Thumb-2 code, where the IT instruction is added implicitly. If arm is specified, such constructs are accepted in ARM code and cause an error in Thumb-2 code. If thumb is specified, such constructs cause a warning in ARM code and are accepted in Thumb-2 code. If you omit this option, the behavior is equivalent to -mimplicit-it=arm.

-mapcs-26
-mapcs-32
These options specify that the output generated by the assembler should be marked as supporting the indicated version of the Arm Procedure. Calling Standard.

-matpcs
This option specifies that the output generated by the assembler should be marked as supporting the Arm/Thumb Procedure Calling Standard. If enabled this option will cause the assembler to create an empty debugging section in the object file called .arm.atpcs. Debuggers can use this to determine the ABI being used by.

-mapcs-float
This indicates the floating point variant of the APCS should be used. In this variant floating point arguments are passed in FP registers rather than integer registers.

-mapcs-reentrant
This indicates that the reentrant variant of the APCS should be used. This variant supports position independent code.

-mfloat-abi=abi
This option specifies that the output generated by the assembler should be marked as using specified floating point ABI. The following values are recognized: soft, softfp and hard.

-meabi=ver
This option specifies which EABI version the produced object files should conform to. The following values are recognized: gnu, 4 and 5.

-EB
This option specifies that the output generated by the assembler should be marked as being encoded for a big-endian processor.

-EL
This option specifies that the output generated by the assembler should be marked as being encoded for a little-endian processor.

-k
This option specifies that the output of the assembler should be marked as position-independent code (PIC).

--fix-v4bx
Allow BX instructions in ARMv4 code. This is intended for use with the linker option of the same name.

-mwarn-deprecated
-mno-warn-deprecated
Enable or disable warnings about using deprecated options or features. The default is to warn.

-mccs
Turns on CodeComposer Studio assembly syntax compatibility mode.

arm 交叉编译时 gcc 的 Options的更多相关文章

  1. 建立ARM交叉编译环境 (arm-none-linux-gnueabi-gcc with EABI)【转】

    转自:http://lib.csdn.net/article/embeddeddevelopment/60172?knId=886 建立ARM交叉编译环境 (arm-none-linux-gnueab ...

  2. Linux ARM交叉编译工具链制作过程【转】

    本文转载自:http://www.cnblogs.com/Charles-Zhang-Blog/archive/2013/02/21/2920999.html 一.下载源文件 源代码文件及其版本与下载 ...

  3. Ubuntu18.04 LTS x64 构建ARM交叉编译环境(尝试,但失败了!!!估计是编译器没选对)

    [测试而已,由于需要了解编译器和处理器体系,因此先放弃该方法] 动机 入门嵌入式开发,又需要 Windows 又需要 Linux,但资料给的竟然是 Ubuntu9,导致我不能使用 VSCode Rem ...

  4. Ubuntu12.04下arm交叉编译环境的建立

    http://blog.csdn.net/heyangya2009/article/details/5424376 备注:ubuntu12.04+Android+Real6410 在主机上用来编译其他 ...

  5. 【转】ARM交叉编译工具链

    原文网址:http://www.veryarm.com/cross-tools 为什么要用交叉编译器? 交叉编译通俗地讲就是在一种平台上编译出能运行在体系结构不同的另一种平台上的程序,比如在PC平台( ...

  6. Linux学习笔记——怎样在交叉编译时使用共享库

    0.前言     在较为复杂的项目中会利用到交叉编译得到的共享库(*.so文件).在这样的情况下便会产生下面疑问,比如:     [1]交叉编译时的共享库是否须要放置于目标板中,假设须要放置在哪个文件 ...

  7. ARM交叉编译工具链分类说明

    转载整理自:http://www.veryarm.com/cross-tools 从授权上,ARM交叉编译工具链分为免费授权版和付费授权版. 免费版目前有三大主流工具商提供,第一是GNU(提供源码,自 ...

  8. ARM交叉编译工具链

    交叉编译工具链是一个由编译器.连接器和解释器组成的综合开发环境,交叉编译工具链主要由binutils.gcc和glibc三个部分组成. 免费版目前有三大主流工具商提供,第一是GNU(提供源码,自行编译 ...

  9. arm交叉编译 扫盲贴

    ARM交叉编译工具链 为什么要用交叉编译器? 交叉编译通俗地讲就是在一种平台上编译出能运行在体系结构不同的另一种平台上的程序, 比如在PC平台(X86 CPU)上编译出能运行在以ARM为内核的CPU平 ...

随机推荐

  1. python 脚本

    mag3.py 1,import import sys from org.eclipse.jface.dialogs import MessageDialogfrom org.eclipse.core ...

  2. HTTP - PUT 上传文件/Shell

    今天遇到几个PUT上传的点,但是都没利用起来.一怒之下,在自己本地试了一下.步骤如下: 一.环境: 首先,根据 配置Apache服务器支持向目录PUT文件 更新一下httpd.conf文件,重启所有服 ...

  3. iOS序列化与反序列化

    1到底这个序列化有啥作用? 面向对象的程序在运行的时候会创建一个复杂的对象图,经常要以二进制的方法序列化这个对象图,这个过程叫做Archiving. 二进制流可以通过网络或写入文件中(来源于某教材的一 ...

  4. hdu 1754 I Hate It (模板线段树)

    http://acm.hdu.edu.cn/showproblem.php?pid=1754 I Hate It Time Limit: 9000/3000 MS (Java/Others)    M ...

  5. POJ - 1523 SPF

    题目要求割顶集,并且还要求出去掉割顶之后剩下的图连通数目. tarjan算法求出割顶后直接枚举就可以了吧. 一开始想到利用iscut[u]的次数也就是点u被判定为割顶的次数求连通分量数,还有利用与结点 ...

  6. dropdownlist无刷新传值

    既然局部刷新,其实没有必要用服务器控件,即便用了服务器控件,也不应该将AutoPostBack="true" ,这将导致页面回发并刷新,因此去掉下拉框的该属性 至于局部改变div的 ...

  7. SPRING IN ACTION 第4版笔记-第四章ASPECT-ORIENTED SPRING-005-定义切面使用@Aspect、@EnableAspectJAutoProxy、<aop:aspectj-autoproxy>

    一. 假设有如下情况,有一个演凑者和一批观众,要实现在演凑者的演凑方法前织入观众的"坐下"."关手机方法",在演凑结束后,如果成功,则织入观众"鼓掌& ...

  8. hadoop2.2编程:MRUnit——Test MaxTemperatureMapper

    继承关系1 1. java.lang.Object |__ org.apache.hadoop.mapreduce.JobContext |__org.apache.hadoop.mapreduce. ...

  9. Ajax的同步和异步

    在实际编程过程中,涉及到很多同步和异步的问题,例如: $("#btnTJ").bind("click", function () { //第一条语句 $.pos ...

  10. BASE64编码规则及C#实现

    一.编码规则      Base64编码的思想是是采用64个基本的ASCII码字符对数据进行重新编码.它将需要编码的数据拆分成字节数组.以3个字节为一组.按顺序排列24位数据,再把这24位数据分成4组 ...