图论(网络流):SPOJ OPTM - Optimal Marks
OPTM - Optimal Marks
You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range [0..231 – 1]. Different vertexes may have the same mark.
For an edge (u, v), we define Cost(u, v) = mark[u] xor mark[v].
Now we know the marks of some certain nodes. You have to determine the marks of other nodes so that the total cost of edges is as small as possible.
Input
The first line of the input data contains integer T (1 ≤ T ≤ 10) - the number of testcases. Then the descriptions of T testcases follow.
First line of each testcase contains 2 integers N and M (0 < N <= 500, 0 <= M <= 3000). N is the number of vertexes and M is the number of edges. Then M lines describing edges follow, each of them contains two integers u, v representing an edge connecting u and v.
Then an integer K, representing the number of nodes whose mark is known. The next K lines contain 2 integers u and p each, meaning that node u has a mark p. It’s guaranteed that nodes won’t duplicate in this part.
Output
For each testcase you should print N lines integer the output. The Kth line contains an integer number representing the mark of node K. If there are several solutions, you have to output the one which minimize the sum of marks. If there are several solutions, just output any of them.
Example
Input:
1
3 2
1 2
2 3
2
1 5
3 100 Output:
5
4
100 COGS上AC了,这里花46分钟买了个教训。
SPOJ:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
const int INF=;
const int maxn=;
const int maxm=;
int cnt,fir[maxn],to[maxm],nxt[maxm],cap[maxm];
void addedge(int a,int b,int c){
nxt[++cnt]=fir[a];
fir[a]=cnt;
cap[cnt]=c;
to[cnt]=b;
} queue<int>q;
int dis[maxn];
bool BFS(int s,int t){
dis[t]=;q.push(t);
while(!q.empty()){
int x=q.front();q.pop();
for(int i=fir[x];i;i=nxt[i])
if(!dis[to[i]]){
dis[to[i]]=dis[x]+;
q.push(to[i]);
}
}
return dis[s];
} int fron[maxn];
int gap[maxn],path[maxn];
int ISAP(int s,int t){
if(!BFS(s,t))return ;
for(int i=s;i<=t;i++)++gap[dis[i]];
for(int i=s;i<=t;i++)fron[i]=fir[i];
int p=s,ret=,f;
while(dis[s]<=t+){
if(p==t){
f=INF;
while(p!=s){
f=min(f,cap[path[p]]);
p=to[path[p]^];
}
ret+=f;p=t;
while(p!=s){
cap[path[p]]-=f;
cap[path[p]^]+=f;
p=to[path[p]^];
}
}
int &ii=fron[p];
for(;ii;ii=nxt[ii])
if(cap[ii]&&dis[p]==dis[to[ii]]+)
break;
if(ii)
path[p=to[ii]]=ii;
else{
if(--gap[dis[p]]==)break;
int minn=t+;
for(int i=fir[p];i;i=nxt[i])
if(cap[i])minn=min(minn,dis[to[i]]);
++gap[dis[p]=minn+];ii=fir[p];
if(p!=s)p=to[path[p]^];
}
}
return ret;
} void Init(){
memset(fir,,sizeof(fir));
memset(dis,,sizeof(dis));
memset(gap,,sizeof(gap));
cnt=;
} int n,m,T;
long long a[maxn],w[maxn];
int E[maxm][],fa[maxn];
int Find(int x){
return fa[x]==x?x:fa[x]=Find(fa[x]);
} int vis[maxn];
void DFS(int x,int d){
vis[x]=;a[x]|=d;
for(int i=fir[x];i;i=nxt[i])
if(cap[i]&&!vis[to[i]])
DFS(to[i],d);
} long long Solve(){
int s=,t=n+;
long long ret=;
for(int k=;k<=;k++){
Init();
for(int i=;i<=n;i++)
if(Find(i)==&&w[i]>=){
if(w[i]>>k&){
addedge(s,i,INF);
addedge(i,s,);
}
else{
addedge(i,t,INF);
addedge(t,i,);
}
}
for(int i=;i<=m;i++)
if(Find(E[i][])==){
addedge(E[i][],E[i][],);
addedge(E[i][],E[i][],);
}
ret+=(1ll<<k)*ISAP(s,t);
memset(vis,,sizeof(vis));
DFS(s,1ll<<k);
}
return ret;
} int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
for(int j=;j<=;j++)
scanf("%d",&E[i][j]); int u,v,k;
scanf("%d",&k);
memset(w,-,sizeof(w));
memset(a,,sizeof(a));
while(k--){
scanf("%d",&u);
scanf("%lld",&w[u]);
} for(int i=;i<=n;i++)
fa[i]=w[i]!=-?:i; for(int i=;i<=m;i++){
u=Find(E[i][]);
v=Find(E[i][]);
if(u>v)swap(u,v);
if(u!=v)fa[v]=u;
}
Solve();
for(int i=;i<=n;i++)
if(w[i]<)
printf("%lld\n",a[i]);
else
printf("%lld\n",w[i]);
}
return ;
}
图论(网络流):SPOJ OPTM - Optimal Marks的更多相关文章
- SPOJ OPTM - Optimal Marks
OPTM - Optimal Marks no tags You are given an undirected graph G(V, E). Each vertex has a mark whic ...
- 【bzoj2400】Spoj 839 Optimal Marks 按位最大流
Spoj 839 Optimal Marks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 908 Solved: 347[Submit][Stat ...
- 【BZOJ2400】Spoj 839 Optimal Marks 最小割
[BZOJ2400]Spoj 839 Optimal Marks Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. ...
- SPOJ 839 OPTM - Optimal Marks (最小割)(权值扩大,灵活应用除和取模)
http://www.spoj.com/problems/OPTM/ 题意: 给出一张图,点有点权,边有边权 定义一条边的权值为其连接两点的异或和 定义一张图的权值为所有边的权值之和 已知部分点的点权 ...
- 【bzoj2400】Spoj 839 Optimal Marks 网络流最小割
题目描述 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. 给你一个有n个结点m条边的无向图.其中的一些点的值是给定的,而其余的点的值由你 ...
- spoj 839 OPTM - Optimal Marks&&bzoj 2400【最小割】
因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求 ...
- SPOJ839 OPTM - Optimal Marks
传送门 闵神讲网络流应用的例题,来水一水 要写出这道题,需要深入理解两个概念,异或和最小割. 异或具有相对独立性,所以我们把每一位拆开来看,即做大概$32$次最小割.然后累加即可. 然后是最小割把一张 ...
- BZOJ2400: Spoj 839 Optimal Marks
Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. 给你一个有n个结点m条边的无向图.其中的一些点的值是给定的,而其 ...
- spoj 839 Optimal Marks(二进制位,最小割)
[题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17875 [题意] 给定一个图,图的权定义为边的两端点相抑或值的 ...
随机推荐
- CentOS 6.7增加SWAP交换分区
任务:新增一个1GB的SWAP分区,并开机自动挂载 1.在/var目录下新增SWAPFILE交换区文件 2.生成SWAP分区 mkswap /var/SWAPFILE 3.激活SWAP分区 swapo ...
- JQ 日期格式化
将字符转换为日期格式: function getDate(strDate) { var date = eval('new Date(' + strDate.replace(/\d+(?=-[^-]+$ ...
- 关于百度 UEditor的使用
1.文件路径的配置: 注意:在页面上需要指定editor文件所在的路径,否则报错 后面有时间,再说说 kindEditor和 bootstrap3的summernote的 Editor, fck ...
- A除以B_2
本题要求计算A/B,其中A是不超过1000位的正整数,B是1位正整数.你需要输出商数Q和余数R,使得A = B * Q + R成立. 输入格式: 输入在1行中依次给出A和B,中间以1空格分隔. 输出格 ...
- ASP生成新会员编号
Function MakeUserCode OpenDB() Randomize dim getid_rs,getid set getid_rs=rsobj do while true getid=^ ...
- 用户组,AD域控简介
“自由”的工作组 工作组(WORK GROUP)就是将不同的电脑按功能分别列入不同的组中,以方便管理.比如在一个网络内,可能有成百上千台工作电脑,如果这些电脑不进行分组,都列在“网上邻居”内,可 ...
- 一条sql语句循环插入N条不同记录(转)
SET NOCOUNT ON IF (OBJECT_ID('TB' ) IS NOT NULL ) DROP TABLE TB GO CREATE TABLE TB(ID INT IDENTITY ( ...
- SGU 197.Nice Patterns Strike Back
时间限制:0.5s 空间限制:6M 题意: 给出长n(n<=10^100)和宽m(m<=5)的地面,铺上黑色和白色的地板,使得没有任意一个2*2大小的地面铺同种颜色的方案数是多少. Sol ...
- SGU 199 Beautiful People(DP+二分)
时间限制:0.25s 空间限制:4M 题意: 有n个人,每个人有两个能力值,只有一个人的两个能力都小于另一个的能力值,这两个人才能共存,求能同时共存的最大人数. Solution: 显然这是一个两个关 ...
- apache-php安装mysql简单方法
1.启用mysql功能,在php.ini中 extension=php_mysql.dll extension=php_mysqli.dll 2. 修改extension_dir = "ex ...