Bridging signals

Description

'Oh no, they've done it again', cries the chief designer at the Waferland chip factory. Once more the routing designers have screwed up completely, making the signals on the chip connecting the ports of two functional blocks cross each other all over the place. At this late stage of the process, it is too expensive to redo the routing. Instead, the engineers have to bridge the signals, using the third dimension, so that no two signals cross. However, bridging is a complicated operation, and thus it is desirable to bridge as few signals as possible. The call for a computer program that finds the maximum number of signals which may be connected on the silicon surface without crossing each other, is imminent. Bearing in mind that there may be thousands of signal ports at the boundary of a functional block, the problem asks quite a lot of the programmer. Are you up to the task? 

A typical situation is schematically depicted in figure 1. The ports of the two functional blocks are numbered from 1 to p, from top to bottom. The signal mapping is described by a permutation of the numbers 1 to p in the form of a list of p unique numbers in the range 1 to p, in which the i:th number specifies which port on the right side should be connected to the i:th port on the left side.Two signals cross if and only if the straight lines connecting the two ports of each pair do.

Input

On the first line of the input, there is a single positive integer n, telling the number of test scenarios to follow. Each test scenario begins with a line containing a single positive integer p < 40000, the number of ports on the two functional blocks. Then follow p lines, describing the signal mapping:On the i:th line is the port number of the block on the right side which should be connected to the i:th port of the block on the left side.

Output

For each test scenario, output one line containing the maximum number of signals which may be routed on the silicon surface without crossing each other.

Sample Input

4
6
4
2
6
3
1
5
10
2
3
4
5
6
7
8
9
10
1
8
8
7
6
5
4
3
2
1
9
5
8
9
2
3
1
7
4
6

Sample Output

3
9
1
4 题目大意:求最长上升子序列,序列长度最大为40000。 分析:如果用一般的LIS算法,时间复杂度高达n^2。这里引用《入门经典》复杂度为O(nlogn)的方法。
  假设已经计算出的两个状态 a 和 b 满足Aa < Bb 且d(a)==d(b),则对于后续所有状态 i(即i>a且i>b)来说,a并不会比b差——如果b满足Ab < Ai的条件,a也满足,且二者的d值相同;但反过来却不一定了。换句话说,如果我们只保留a,一定不会丢失最优解。
  这样,对于相同的d值,只需要保留A最小的一个。我们用g(i)表示d值为i的最小状态编号。根据上述推理证明
  g(1)<=g(2)<=g(3)<=...<=g(n)
  上述的g值是动态改变的。对于一个给定的状态i,我们只考虑在i之前已经计算过的状态j(即j<i)。在给定状态i时可以用二分查找得到满足g(k)>=Ai的第一个下标k,则d(i)=k,此时Ai<g(k),而d(i)=k,所以更新g(k)=Ai。(话说看的不是很明白)
 for(i=1; i<=n; i++) g[i] = INF;
for(i=0; i<n; i++)
{
int k = lower_bound(g+1,g+n+1,A[i]) - g;
      d[i]=k;
g[k] = A[i];
}
代码如下:
 # include<cstdio>
# include<iostream>
# include<algorithm>
using namespace std;
# define INF 0xffffff
int n;
int g[],A[]; int main()
{
int i,T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(i=; i<n; i++)
scanf("%d",&A[i]);
int ans = ;
for(i=; i<=n; i++) g[i] = INF;
for(i=; i<n; i++)
{
int k = lower_bound(g+,g+n+,A[i]) - g;
g[k] = A[i];
if(k>ans)
ans = k;
}
printf("%d\n",ans);
}
return ;
}
LIS nlogn算法大罗列!
网上有这一方面的总结 //n是原序列长度,a[]是原序列,D是a[]的值域大小

1. f[i]表示a[i]结尾的LIS长度,f[i] = max{f[j]}+1 : a[j]<a[i]

1.1 维护一个以a的值为下标,以f的值为值的树状数组优化转移。O(n log D)

1.2 g[x]表示长度为x的所有LIS中最小的末尾的值,可证g[x]单调递增,二分查找转移。O(n log n)

1.3 维护一个“最优”的LIS q,每次将q关于a[i]的lower_bound更新为a[i],同时转移。O(n log n)

1.2代码如下:
 #include <iostream>
using namespace std; int a[];
int dp[];
int b[], blen;
int n; int main() {
int ca,i;
scanf("%d", &ca);
while (ca--) {
scanf("%d", &n);
for (i = ; i <= n; ++i) {
scanf("%d", a+i);
}
memset(b,,sizeof(b));
memset(dp,,sizeof(dp)); int left, right, mid;
blen = ;
int res = ;
for (i = ; i <= n; ++i) {
left = ;
right = blen;
int num = a[i];
while (left <= right) {
mid = (left + right)/;
if (b[mid] < a[i]) {
left = mid + ;
}
else {
right = mid - ;
}
}
dp[i] = left;
b[left] = a[i];
if (blen < left)
blen = left;
if (res < dp[i])
res = dp[i];
}
printf("%d\n", res);
}
return ;
}

 
												

POJ 1631 Bridging signals(LIS O(nlogn)算法)的更多相关文章

  1. POJ 1631 Bridging signals (LIS:最长上升子序列)

    题意:给你一个长为n(n<=40000)的整数序列, 要你求出该序列的最长上升子序列LIS. 思路:要求(nlogn)解法 令g[i]==x表示当前遍历到的长度为i的所有最长上升子序列中的最小序 ...

  2. POJ 1631 Bridging signals(LIS 二分法 高速方法)

    Language: Default Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1076 ...

  3. OpenJudge/Poj 1631 Bridging signals

    1.链接地址: http://poj.org/problem?id=1631 http://bailian.openjudge.cn/practice/1631 2.题目: Bridging sign ...

  4. POJ 1631 Bridging signals

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9441   Accepted: 5166 ...

  5. poj 1631 Bridging signals (二分||DP||最长递增子序列)

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9234   Accepted: 5037 ...

  6. POJ 1631 Bridging signals(LIS的等价表述)

    把左边固定,看右边,要求线不相交,编号满足单调性,其实是LIS的等价表述. (如果编号是乱的也可以把它有序化就像Uva 10635 Prince and Princess那样 O(nlogn) #in ...

  7. Poj 1631 Bridging signals(二分+DP 解 LIS)

    题意:题目很难懂,题意很简单,求最长递增子序列LIS. 分析:本题的最大数据40000,多个case.用基础的O(N^2)动态规划求解是超时,采用O(n*log2n)的二分查找加速的改进型DP后AC了 ...

  8. POJ - 1631 Bridging signals(最长上升子序列---LIS)

    题意:左右各n个端口,已知n组线路,要求切除最少的线路,使剩下的线路各不相交,按照左端口递增的顺序输入. 分析: 1.设左端口为l,右端口为r,因为左端口递增输入,l[i] < l[j](i & ...

  9. POJ 1631 Bridging signals & 2533 Longest Ordered Subsequence

    两个都是最长上升子序列,所以就放一起了 1631 因为长度为40000,所以要用O(nlogn)的算法,其实就是另用一个数组c来存储当前最长子序列每一位的最小值,然后二分查找当前值在其中的位置:如果当 ...

随机推荐

  1. [Boost::Polygon]多边形相减得到新的多边形序列

    #include <iostream> #include <boost/polygon/polygon.hpp> #include <cassert> namesp ...

  2. 获取和设置select和checkbox的值

    if ($("input[name = 'recpower']").prop("checked") == true) //获取checkbox值 { data. ...

  3. 解决eclipse插件svn不显示svn信息和显示的信息为数字的问题

    1.选择window-->preferences如下图 通过上面步骤svn信息便显示了 2.解决显示的信息为数字问题 选择svn-label decoration format里面的author ...

  4. Keepass 2.x 的一些新发现

    近期将 Keepass 从 1.22 升级到了 2.24,经过一番折腾,发现有了很多新功能,也有一些之前被忽视的地方.再一次感叹这个软件的强大,向作者的无私奉献致敬! 其实,这个软件一直有 1.x 和 ...

  5. SRM 609(1-250pt, 1-500pt)

    嗯....还是应该坚持写题解的好习惯啊... DIV1 250pt 这难度是回到srm 300+的250了嘛...略 // BEGIN CUT HERE /* * Author: plum rain ...

  6. 【ACM/ICPC2013】二分图匹配专题

    前言:居然三天没有更新了..我的效率实在太低,每天都用各种各样的理由拖延,太差了!昨天的contest依旧不能让人满意,解出的三题都是队友A的,我又卖了一次萌..好吧废话不多说,今天我要纪录的是二分图 ...

  7. Oracle学习.Windows 命令行 启动ORACLE服务与实例

    使用数据库前要先打开数据库的实例和监听器! --总结启动命令如下: lsnrctl  [start|stop|status]                  --启动监听器,停止监听器,查看监听器的 ...

  8. 【JAVA - SSM】之MyBatis开发DAO

    在SSM框架中的DAO层就是MyBatis中的Mapper,Mapper分为两部分:Mapper接口(JAVA文件)和Mapper映射文件(XML文件).DAO开发(Mapper开发)有两种方式:原始 ...

  9. GA遗传算法解析

    LinJM  @HQU 谈及遗传算法,我首先想到的就是孟德尔的豌豆实验.当然,遗传算法实质上并不能用豌豆实验说明,豌豆实验探讨了分离定律和自由组合定律,而遗传算法所借鉴的并不是这两个定律.遗传算法,简 ...

  10. [Javascript + rxjs] Introducing the Observable

    In this lesson we will get introduced to the Observable type. An Observable is a collection that arr ...