Bridging signals

Description

'Oh no, they've done it again', cries the chief designer at the Waferland chip factory. Once more the routing designers have screwed up completely, making the signals on the chip connecting the ports of two functional blocks cross each other all over the place. At this late stage of the process, it is too expensive to redo the routing. Instead, the engineers have to bridge the signals, using the third dimension, so that no two signals cross. However, bridging is a complicated operation, and thus it is desirable to bridge as few signals as possible. The call for a computer program that finds the maximum number of signals which may be connected on the silicon surface without crossing each other, is imminent. Bearing in mind that there may be thousands of signal ports at the boundary of a functional block, the problem asks quite a lot of the programmer. Are you up to the task? 

A typical situation is schematically depicted in figure 1. The ports of the two functional blocks are numbered from 1 to p, from top to bottom. The signal mapping is described by a permutation of the numbers 1 to p in the form of a list of p unique numbers in the range 1 to p, in which the i:th number specifies which port on the right side should be connected to the i:th port on the left side.Two signals cross if and only if the straight lines connecting the two ports of each pair do.

Input

On the first line of the input, there is a single positive integer n, telling the number of test scenarios to follow. Each test scenario begins with a line containing a single positive integer p < 40000, the number of ports on the two functional blocks. Then follow p lines, describing the signal mapping:On the i:th line is the port number of the block on the right side which should be connected to the i:th port of the block on the left side.

Output

For each test scenario, output one line containing the maximum number of signals which may be routed on the silicon surface without crossing each other.

Sample Input

4
6
4
2
6
3
1
5
10
2
3
4
5
6
7
8
9
10
1
8
8
7
6
5
4
3
2
1
9
5
8
9
2
3
1
7
4
6

Sample Output

3
9
1
4 题目大意:求最长上升子序列,序列长度最大为40000。 分析:如果用一般的LIS算法,时间复杂度高达n^2。这里引用《入门经典》复杂度为O(nlogn)的方法。
  假设已经计算出的两个状态 a 和 b 满足Aa < Bb 且d(a)==d(b),则对于后续所有状态 i(即i>a且i>b)来说,a并不会比b差——如果b满足Ab < Ai的条件,a也满足,且二者的d值相同;但反过来却不一定了。换句话说,如果我们只保留a,一定不会丢失最优解。
  这样,对于相同的d值,只需要保留A最小的一个。我们用g(i)表示d值为i的最小状态编号。根据上述推理证明
  g(1)<=g(2)<=g(3)<=...<=g(n)
  上述的g值是动态改变的。对于一个给定的状态i,我们只考虑在i之前已经计算过的状态j(即j<i)。在给定状态i时可以用二分查找得到满足g(k)>=Ai的第一个下标k,则d(i)=k,此时Ai<g(k),而d(i)=k,所以更新g(k)=Ai。(话说看的不是很明白)
 for(i=1; i<=n; i++) g[i] = INF;
for(i=0; i<n; i++)
{
int k = lower_bound(g+1,g+n+1,A[i]) - g;
      d[i]=k;
g[k] = A[i];
}
代码如下:
 # include<cstdio>
# include<iostream>
# include<algorithm>
using namespace std;
# define INF 0xffffff
int n;
int g[],A[]; int main()
{
int i,T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(i=; i<n; i++)
scanf("%d",&A[i]);
int ans = ;
for(i=; i<=n; i++) g[i] = INF;
for(i=; i<n; i++)
{
int k = lower_bound(g+,g+n+,A[i]) - g;
g[k] = A[i];
if(k>ans)
ans = k;
}
printf("%d\n",ans);
}
return ;
}
LIS nlogn算法大罗列!
网上有这一方面的总结 //n是原序列长度,a[]是原序列,D是a[]的值域大小

1. f[i]表示a[i]结尾的LIS长度,f[i] = max{f[j]}+1 : a[j]<a[i]

1.1 维护一个以a的值为下标,以f的值为值的树状数组优化转移。O(n log D)

1.2 g[x]表示长度为x的所有LIS中最小的末尾的值,可证g[x]单调递增,二分查找转移。O(n log n)

1.3 维护一个“最优”的LIS q,每次将q关于a[i]的lower_bound更新为a[i],同时转移。O(n log n)

1.2代码如下:
 #include <iostream>
using namespace std; int a[];
int dp[];
int b[], blen;
int n; int main() {
int ca,i;
scanf("%d", &ca);
while (ca--) {
scanf("%d", &n);
for (i = ; i <= n; ++i) {
scanf("%d", a+i);
}
memset(b,,sizeof(b));
memset(dp,,sizeof(dp)); int left, right, mid;
blen = ;
int res = ;
for (i = ; i <= n; ++i) {
left = ;
right = blen;
int num = a[i];
while (left <= right) {
mid = (left + right)/;
if (b[mid] < a[i]) {
left = mid + ;
}
else {
right = mid - ;
}
}
dp[i] = left;
b[left] = a[i];
if (blen < left)
blen = left;
if (res < dp[i])
res = dp[i];
}
printf("%d\n", res);
}
return ;
}

 
												

POJ 1631 Bridging signals(LIS O(nlogn)算法)的更多相关文章

  1. POJ 1631 Bridging signals (LIS:最长上升子序列)

    题意:给你一个长为n(n<=40000)的整数序列, 要你求出该序列的最长上升子序列LIS. 思路:要求(nlogn)解法 令g[i]==x表示当前遍历到的长度为i的所有最长上升子序列中的最小序 ...

  2. POJ 1631 Bridging signals(LIS 二分法 高速方法)

    Language: Default Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1076 ...

  3. OpenJudge/Poj 1631 Bridging signals

    1.链接地址: http://poj.org/problem?id=1631 http://bailian.openjudge.cn/practice/1631 2.题目: Bridging sign ...

  4. POJ 1631 Bridging signals

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9441   Accepted: 5166 ...

  5. poj 1631 Bridging signals (二分||DP||最长递增子序列)

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9234   Accepted: 5037 ...

  6. POJ 1631 Bridging signals(LIS的等价表述)

    把左边固定,看右边,要求线不相交,编号满足单调性,其实是LIS的等价表述. (如果编号是乱的也可以把它有序化就像Uva 10635 Prince and Princess那样 O(nlogn) #in ...

  7. Poj 1631 Bridging signals(二分+DP 解 LIS)

    题意:题目很难懂,题意很简单,求最长递增子序列LIS. 分析:本题的最大数据40000,多个case.用基础的O(N^2)动态规划求解是超时,采用O(n*log2n)的二分查找加速的改进型DP后AC了 ...

  8. POJ - 1631 Bridging signals(最长上升子序列---LIS)

    题意:左右各n个端口,已知n组线路,要求切除最少的线路,使剩下的线路各不相交,按照左端口递增的顺序输入. 分析: 1.设左端口为l,右端口为r,因为左端口递增输入,l[i] < l[j](i & ...

  9. POJ 1631 Bridging signals & 2533 Longest Ordered Subsequence

    两个都是最长上升子序列,所以就放一起了 1631 因为长度为40000,所以要用O(nlogn)的算法,其实就是另用一个数组c来存储当前最长子序列每一位的最小值,然后二分查找当前值在其中的位置:如果当 ...

随机推荐

  1. (DT系列四)驱动加载中, 如何取得device tree中的属性

    本文以At91rm9200平台为例,从源码实现的角度来分析驱动加载时,Device tree的属性是如何取得的.一:系统级初始化DT_MACHINE_START 主要是定义"struct m ...

  2. PHP向MySql中插入数据

    <!DOCTYPE html> <!-- To change this license header, choose License Headers in Project Prope ...

  3. 我的第一个JApplet-绘制笑脸

    初学Java,有很多东西都不太理解,但是我想以前初学C语言的时候也是不太懂,先参考着书上的程序写,然后用多了就自然而然的懂了! 下面来简单的介绍一下我自学的第一个Java小应用程序-绘制笑脸,下面是源 ...

  4. 零基础学习视频解码之FFMpeg中比较重要的函数以及数据结构

    http://www.cnblogs.com/tanlon/p/3879081.html 在正式开始解码练习前先了解下关于FFmpeg中比较重要的函数以及数据结构. 1. 数据结构:  (1) AVF ...

  5. Yii框架常见问题汇总

    然用过Yii做了一个小项目了,但是过程中间解决的问题没有随手记下来,导致新项目开始后,以前碰到的问题还得在查一遍,干脆就记下来,以便不时之需. 有新的会随时更新. 1.如何显示ActiveRecord ...

  6. 天津Uber优步司机奖励政策(2月1日~2月7日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  7. (转)在Mac下使用OpenCV, 在Xcode下使用OpenCV (非常基础,详细)

    转自:http://blog.sciencenet.cn/home.php?COLLCC=3456986939&COLLCC=3456885714&mod=space&uid= ...

  8. Testing和Instrumentation(转)

    Android提供了一系列强大的测试工具,它针对Android的环境,扩展了业内标准的JUnit测试框架.尽管你可以使用JUnit测试Android工程,但Android工具允许你为应用程序的各个方面 ...

  9. ar技术序章-SDK介绍和选择

    转自: http://blog.csdn.net/kun1234567/article/details/10402535 ar技术序章-SDK介绍和选择 分类: Augmented Reality20 ...

  10. Genymotion常见问题汇总(转)

    为什么说是常见问题整合呢,因为我就是Genymotion最悲剧的使用者,该见过的问题,我基本都见过了,在此总结出这血的教训,望大家不要重蹈覆辙.     常见问题1:Genymotion在开启模拟器时 ...