Using the Task Parallel Library (TPL) for Events
Using the Task Parallel Library (TPL) for Events
The parallel tasks library was introduced with the .NET Framework 4.0 and is designed to simplify parallelism and concurrency. The API is very straightforward and usually involves passing in an Action to execute. Things get a little more interesting when you are dealing with asynchronous models such as events.
While the TPL has explicit wrappers for the asynchronous programming model (APM) that you can read about here: TPL APM Wrappers, there is no explicit way to manage events.
I usually hide the "muck" of subscribing and waiting for a
completed action in events with a callback. For example, the following
method generates a random number. I'm using a delay to simulate a
service call and a thread task to make the call back asynchronous: you
call into the method, then provide a delegate that is called once the
information is available.
private static void _GenerateRandomNumber(Action<int> callback)
{
var random = _random.Next(0, 2000) + 10;
Console.WriteLine("Generated {0}", random);
Task.Factory.StartNew(() =>
{
Thread.Sleep(1000);
callback(random);
}, TaskCreationOptions.None);
}
Now consider an algorithm that requires three separate calls to complete to provide the input values in order to compute a result. The calls are independent so they can be done in parallel. The TPL supports "parent" tasks that wait for their children to complete, and a first pass might look like this:
private static void _Incorrect()
{ var start = DateTime.Now; int x = 0, y = 0, z = 0; Task.Factory.StartNew(
() =>
{
Task.Factory.StartNew(() => _GenerateRandomNumber(result => x = result),
TaskCreationOptions.AttachedToParent);
Task.Factory.StartNew(() => _GenerateRandomNumber(result => y = result),
TaskCreationOptions.AttachedToParent);
Task.Factory.StartNew(() => _GenerateRandomNumber(result => z = result),
TaskCreationOptions.AttachedToParent);
}).ContinueWith(t =>
{
var finish = DateTime.Now;
Console.WriteLine("Bad Parallel: {0}+{1}+{2}={3} [{4}]",
x, y, z,
x+y+z,
finish - start);
_Parallel();
});
}
The code aggregates several tasks to the parent, the parent then waits for the children to finish and continues by computing the time span and showing the result. While the code executes extremely fast, the result is not what you want. Take a look:
Press ENTER to begin (and again to end) Generated 593
Generated 1931
Generated 362
Bad Parallel: 0+0+0=0 [00:00:00.0190011]
You can see that three numbers were generated, but nothing was computed in the sum. The reason is that for the purposes of the TPL, the task ends when the code called ends. The TPL has no way to know that the callback was handed off to an asynchronous process (or event) and therefore considers the task complete once the generate call finishes executing. This returns and falls through and the computation is made before the callback fires and updates the values.
So how do you manage this and allow the tasks to execute in parallel but still make sure the values are retrieved?
For this purpose, the TPL provides a special class called TaskCompletionSource<T>.
The task completion source is a point of synchronization that you can
use to complete an asynchronous or event-based task and relay the
result. The underlying task won't complete until an exception is thrown
or the result is set.
To see how this is used, let's take the existing method and fix it using the completion sources:
private static void _Parallel()
{
var taskCompletions = new[]
{
new TaskCompletionSource<int>(),
new TaskCompletionSource<int>(),
new TaskCompletionSource<int>()
}; var tasks = new[] {taskCompletions[0].Task, taskCompletions[1].Task, taskCompletions[2].Task}; var start = DateTime.Now; Task.Factory.StartNew(() => _GenerateRandomNumber(result => taskCompletions[0].TrySetResult(result)));
Task.Factory.StartNew(() => _GenerateRandomNumber(result => taskCompletions[1].TrySetResult(result)));
Task.Factory.StartNew(() => _GenerateRandomNumber(result => taskCompletions[2].TrySetResult(result))); Task.WaitAll(tasks); var finish = DateTime.Now;
Console.WriteLine("Parallel: {0}+{1}+{2}={3} [{4}]",
taskCompletions[0].Task.Result,
taskCompletions[1].Task.Result,
taskCompletions[2].Task.Result,
taskCompletions[0].Task.Result + taskCompletions[1].Task.Result + taskCompletions[2].Task.Result,
finish - start);
}
First, I create an array of the task completions. This makes for an easy reference to coordinate the results. Next, I create an array of the underlying tasks. This provides a collection to pass to Task.WaitAll() to synchronize all return values before computing the result. Instead of using variables, the tasks now use the TaskCompletionSource to set the results after the simulated callback. The tasks won't complete until the result is set, so all values are returned before the final computation is made. Here are the results:
Generated 279
Generated 618
Generated 1013
Parallel: 618+279+1013=1910 [00:00:01.9981143]
You can see that all generated numbers are accounted for and properly added. You can also see that the tasks ran in parallel because it completed in under 2 seconds when each call had a 1 second delay.
The entire console application can simply be cut and pasted from
the following code — there are other ways to chain the tasks and make
the completions fall under a parent but this should help you get your
arms wrapped around dealing with tasks that don't complete when the
methods return, but require a synchronized completion context.
class Program
{
private static readonly Random _random = new Random(); static void Main(string[] args)
{
Console.WriteLine("Press ENTER to begin (and again to end)");
Console.ReadLine(); _Incorrect(); Console.ReadLine();
} private static void _Incorrect()
{ var start = DateTime.Now; int x = 0, y = 0, z = 0; Task.Factory.StartNew(
() =>
{
Task.Factory.StartNew(() => _GenerateRandomNumber(result => x = result),
TaskCreationOptions.AttachedToParent);
Task.Factory.StartNew(() => _GenerateRandomNumber(result => y = result),
TaskCreationOptions.AttachedToParent);
Task.Factory.StartNew(() => _GenerateRandomNumber(result => z = result),
TaskCreationOptions.AttachedToParent);
}).ContinueWith(t =>
{
var finish = DateTime.Now;
Console.WriteLine("Bad Parallel: {0}+{1}+{2}={3} [{4}]",
x, y, z,
x+y+z,
finish - start);
_Parallel();
});
} private static void _Parallel()
{
var taskCompletions = new[]
{
new TaskCompletionSource<int>(),
new TaskCompletionSource<int>(),
new TaskCompletionSource<int>()
}; var tasks = new[] {taskCompletions[0].Task, taskCompletions[1].Task, taskCompletions[2].Task}; var start = DateTime.Now; Task.Factory.StartNew(() => _GenerateRandomNumber(result => taskCompletions[0].TrySetResult(result)));
Task.Factory.StartNew(() => _GenerateRandomNumber(result => taskCompletions[1].TrySetResult(result)));
Task.Factory.StartNew(() => _GenerateRandomNumber(result => taskCompletions[2].TrySetResult(result))); Task.WaitAll(tasks); var finish = DateTime.Now;
Console.WriteLine("Parallel: {0}+{1}+{2}={3} [{4}]",
taskCompletions[0].Task.Result,
taskCompletions[1].Task.Result,
taskCompletions[2].Task.Result,
taskCompletions[0].Task.Result + taskCompletions[1].Task.Result + taskCompletions[2].Task.Result,
finish - start);
} private static void _GenerateRandomNumber(Action<int> callback)
{
var random = _random.Next(0, 2000) + 10;
Console.WriteLine("Generated {0}", random);
Task.Factory.StartNew(() =>
{
Thread.Sleep(1000);
callback(random);
}, TaskCreationOptions.None);
}
}
Using the Task Parallel Library (TPL) for Events的更多相关文章
- TPL(Task Parallel Library)多线程、并发功能
The Task Parallel Library (TPL) is a set of public types and APIs in the System.Threading and System ...
- Winform Global exception and task parallel library exception;
static class Program { /// <summary> /// 应用程序的主入口点. /// </summary> [STAThread] static vo ...
- Task Parallel Library01,基本用法
我们知道,每个应用程序就是一个进程,一个进程有多个线程.Task Parallel Library为我们的异步编程.多线程编程提供了强有力的支持,它允许一个主线程运行的同时,另外的一些线程或Task也 ...
- C#5.0之后推荐使用TPL(Task Parallel Libray 任务并行库) 和PLINQ(Parallel LINQ, 并行Linq). 其次是TAP(Task-based Asynchronous Pattern, 基于任务的异步模式)
学习书籍: <C#本质论> 1--C#5.0之后推荐使用TPL(Task Parallel Libray 任务并行库) 和PLINQ(Parallel LINQ, 并行Linq). 其次是 ...
- C#~异步编程再续~大叔所理解的并行编程(Task&Parallel)
返回目录 并行这个概念出自.net4.5,它被封装在System.Threading.Tasks命名空间里,主要提供一些线程,异步的方法,或者说它是对之前Thread进行的二次封装,为的是让开发人员更 ...
- Task/Parallel实现异步多线程
代码: #region Task 异步多线程,Task是基于ThreadPool实现的 { //TestClass testClass = new TestClass(); //Action<o ...
- 异步和多线程,委托异步调用,Thread,ThreadPool,Task,Parallel,CancellationTokenSource
1 进程-线程-多线程,同步和异步2 异步使用和回调3 异步参数4 异步等待5 异步返回值 5 多线程的特点:不卡主线程.速度快.无序性7 thread:线程等待,回调,前台线程/后台线程, 8 th ...
- Task Parallel Library02,更进一步
在前一篇中,了解了Task的基本用法 如果一个方法返回Task,Task<T>,如何获取Task的返回值,获取值的过程会阻塞线程吗? static void Main(string[] a ...
- FunDA(15)- 示范:任务并行运算 - user task parallel execution
FunDA的并行运算施用就是对用户自定义函数的并行运算.原理上就是把一个输入流截分成多个输入流并行地输入到一个自定义函数的多个运行实例.这些函数运行实例同时在各自不同的线程里同步运算直至耗尽所有输入. ...
随机推荐
- PHP扩展开发(1):入门
有关PHP扩展开发的文章.博客已经很多了,比较经典的有: TIPI项目(http://www.php-internals.com/,强烈推荐) <Extending and Embedding ...
- RX学习笔记:正则表达式
正则表达式 2016-07-03 正则表达式是以字符串模板的形式匹配查找字符的方式. 正则表达式是字符串模板,所以其本身是一个字符串,首尾以反斜杆 / 开始和结束. 在两反斜杆中间的字符串表示要查找的 ...
- 一个空格也可以让html格式显示大不相同
今天在编写html时出现了bug,有两个标签一直贴近显示,但是两段代码完全一样前一段就没有问题. 错误代码如下 <div id="tool1" style="wid ...
- PHP常见算法-面试篇(2)
1.顺序查找 思路分析: 从数组的第一个元素开始一个一个向下查找,如果有和目标一致的元素,查找成功:如果到最后一个元素仍没有目标元素,则查找失败. 代码实现: <?php function se ...
- 使用 桌面的 chrome 远程调试 Android 的页面
手机浏览器是没有开发者工具的,所以调试手机网页是非常麻烦.使用 chrome 的远程调试功能可以像调试桌面端那样调试手机页面. 准备 手机端:chrome for Android, 安装谷歌浏览器 桌 ...
- FolderBrowserDialog(文件夹浏览对话框)
1.选择数据库目录,在此处不需要新建文件夹,因此屏蔽新建文件夹按钮. C#代码 FolderBrowserDialog df = new FolderBrowserDialog(); //设置文件浏览 ...
- RHEL 6.4 64bit kettle5.01导入xlsx格式的excel时报错
环境:RHEL 6.4 64bit : kettle5.01:xlsx格式的excel 创建的job,在spoon里面运行都没有问题(Linux和windows) 在windows的命令行运行也没有问 ...
- javascript 通用loading动画效果
由于项目中多处要给ajax提交的时候增加等待动画效果,所以就写了一个简单的通用js方法: 代码如下: /*ajax提交的延时等待效果*/ var AjaxLoding = new Object(); ...
- HTTP - PUT 上传文件/Shell
今天遇到几个PUT上传的点,但是都没利用起来.一怒之下,在自己本地试了一下.步骤如下: 一.环境: 首先,根据 配置Apache服务器支持向目录PUT文件 更新一下httpd.conf文件,重启所有服 ...
- 增加字体和颜色样式-------CSS
通过使用CSS,控制文本的字体,风格和颜色 1.基本操作: body{ font-family: Verdana, Geneva, Tahoma, sans-serif } body{ font-si ...