这题的俩种方法都是看别人的代码,方法可以学习学习,要多看看。。

几何题用到向量。。

Points on Cycle

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1294    Accepted Submission(s): 455

Problem Description
There is a cycle with its center on the origin. Now give you a point on the cycle, you are to find out the other two points on it, to maximize the sum of the distance between each other you may assume that the radius of the cycle will not exceed 1000.
 
Input
There are T test cases, in each case there are 2 decimal number representing the coordinate of the given point.
 
Output
For each testcase you are supposed to output the coordinates of both of the unknow points by 3 decimal places of precision
Alway output the lower one first(with a smaller Y-coordinate value), if they have the same Y value output the one with a smaller X.

NOTE

when output, if the absolute difference between the coordinate values X1 and X2 is smaller than 0.0005, we assume they are equal.

 
Sample Input
2
1.500 2.000
563.585 1.251
 
Sample Output
0.982 -2.299 -2.482 0.299
-280.709 -488.704 -282.876 487.453
 
Source

//题意:一个以原点为中心的圆,告诉你圆上的一个点,求与另外的两个点组成的三角形的周长最长的两点作标。
//根据几何知识,知道圆内等边三角形的周长最长。所以题目转化为求已知一个点的圆内接等边三角形的另两点作标。
//思路:设P(x,y),一个方程是pow(x,2)+pow(y,2)=pow(r,2);另一个方程是根据向量知识,向量的夹角公式得到方程。
//因为圆心角夹角为120度,已知一个向量(即一个点作标),所以COS(2PI/3)=a*b/|a|*|b|;(a,b为向量);
//已知角和a向量,就可求b向量b(x,y).由方程组可求得(x,y);最后得到的是一元二次方程组,可得到两个解,即为两个点的作标。
//代码如下:
#include <stdio.h>
#include <math.h>
#define PI 3.1415926
int main()
{
double x,y,x1,y1,x2,y2,cosx,a,b,c,r,delta;
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lf%lf",&x,&y);
r=sqrt(x*x+y*y);
a=r*r;
b=r*r*y;
c=r*r*r*r/4-x*x*r*r;
delta=b*b-4*a*c;
y1=(-1*b-sqrt(delta))/(2*a);
y2=(-1*b+sqrt(delta))/(2*a);
if(x==0)
{
x1=-sqrt(r*r-y1*y1);
x2=sqrt(r*r-y2*y2);
}
else
{
x1=(-1*r*r/2-y*y1)/x;
x2=(-1*r*r/2-y*y2)/x;
}
printf("%.3lf %.3lf %.3lf %.3lf\n",x1,y1,x2,y2);
}
return 0;
}
/*已知一个以(0,0)为圆心的圆和圆上的一点(x0,y0)求圆上的另外两点(x1,y1,)(x2,y2),使得向量(x1,y1)(x2,y2)和(x0,y0)各个向量两两之间夹角为120度
此题主要用到向量的叉乘和点乘列出两个二元一次方程组
1.
(x0,y0)X (x1,y1) = sin(120)*R^2 (r为圆的半径)
(x0,y0) * (x1,y1) = cos(120)*R^2
结果为:
x1=b*x0-a*y0; a=sin120
y1=b*y0+a*x0; b=cos120;
2.
(x0,y0)X (x2,y2) = -sin(120)*R^2 (r为圆的半径)
(x0,y0) * (x2,y2) = cos(120)*R^2
注:题目假设向量(x1,y1)在向量(x0,y0)逆时针方向 故叉乘结果为正值
(x2,y2)于(x0,y0)的顺时针方向 故叉乘结果为负值*/
#include <stdio.h>
#include <math.h>
int main()
{
double a,b,sinx,cosx,x0,y0,x1,y1,x2,y2;
int t;
a=sinx=sqrt(3.0)/2;
b=cosx=-0.5;
scanf("%d",&t);
while(t--)
{
scanf("%lf%lf",&x0,&y0);
x1=b*x0-a*y0;
y1=b*y0+a*x0;
x2=b*x0+a*y0;
y2=b*y0-a*x0;
if(y1<y2||((abs(y1-y2)<0.005)&&x1<x2))
{
printf("%.3lf %.3lf %.3lf %.3lf\n",x1,y1,x2,y2);
}
else
printf("%.3lf %.3lf %.3lf %.3lf\n",x2,y2,x1,y1);
}
return 0;
}

HDU-1700 Points on Cycle的更多相关文章

  1. hdu 1700 Points on Cycle(坐标旋转)

    http://acm.hdu.edu.cn/showproblem.php?pid=1700 Points on Cycle Time Limit: 1000/1000 MS (Java/Others ...

  2. HDU 1700 Points on Cycle (坐标旋转)

    题目链接:HDU 1700 Problem Description There is a cycle with its center on the origin. Now give you a poi ...

  3. HDU 1700 Points on Cycle (几何 向量旋转)

    http://acm.hdu.edu.cn/showproblem.php?pid=1700 题目大意: 二维平面,一个圆的圆心在原点上.给定圆上的一点A,求另外两点B,C,B.C在圆上,并且三角形A ...

  4. HDU 1700 Points on Cycle(向量旋转)

    题目链接 水题,卡了下下精度. #include <cstdio> #include <iostream> #include <cmath> using names ...

  5. hdu 1700 Points on Cycle 水几何

    已知圆心(0,0)圆周上的一点,求圆周上另外两点使得三点构成等边三角形. 懒得推公式,直接用模板2圆(r1=dist,r2=sqrt(3)*dist)相交水过 #include<cstdio&g ...

  6. Points on Cycle (hdu1700,几何)

    Points on Cycle Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. hdu1700 Points on Cycle

    地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=1700 题目: Points on Cycle Time Limit: 1000/1000 MS ...

  8. 暑假集训(2)第九弹 ----- Points on Cycle(hdu1700)

                                                Points on Cycle Time Limit:1000MS     Memory Limit:32768 ...

  9. L - Points on Cycle(旋转公式)

    L - Points on Cycle Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

随机推荐

  1. MVC 弹出提示框

    第一种弹框成功后要刷新界面 [HttpPost] public ActionResult Add(Maticsoft.Model.Project.ProjectMoneyPlan model) { m ...

  2. 添加数据时候获取自增的ID

    create database dbDemo go use dbDemo go create table tdstudent { id int primary key identity(1,1), n ...

  3. PHP学习心得(八)——运算符

    运算符是可以通过给出的一或多个值(用编程行话来说,表达式)来产生另一个值(因而整个结构成为一个表达式)的东西.所以可以认为函数或任何会返回一个值(例如 print)的结构是运算符,而那些没有返回值的( ...

  4. (转载)c++builder/delphi中透明panel及透明窗口的实现方法_delphi教程

    c++builder/delphi中透明panel及透明窗口的实现方法_delphi教程 可能大多数程序员会问:透明窗口,特别是透明Panel有什么应用价值呢?可别小看它们哦,下面我就来讲讲他们的巨大 ...

  5. Java基础中的一些注意点

    1.在Java编程语言中,标识符是赋予变量.类或方法的名称.标识符可从一个字母.下划线(_)或美元符号($)开始,随后也可跟数字.标识符是大小写区别对待的并且未规定最大长度. 2.Java技术源程序采 ...

  6. 软件测试 -- Bug等级划分规范

    1. Blocker级别——中断缺陷 客户端程序无响应,无法执行下一步操作. 2. Critical级别――临界缺陷,包括: 功能点缺失,客户端爆页. 3. Major级别——较严重缺陷,包括: 功能 ...

  7. Python Geospatial Development reading note(1)

    chapter 1, Summary: In this chapter, we briefly introduced the Python programming language and the m ...

  8. C# zip/unzip with ICSharpCode.SharpZipLib

    download ICSharpCode and add reference using System; using System.Collections.Generic; using System. ...

  9. 【单片机通信协议】CAN总线基础知识

    CAN总线基础知识(一) 1.1 CAN总线是什么? CAN(Controller Area Network)是ISO国际标准化的串行通信协议.广泛应用于汽车.船舶等.具有已经被大家认可的高性能和可靠 ...

  10. tomcat 7 下添加 shared/lib 文件夹

    你打开tomcat7\conf\catalina.properties文件再打开tomcat5的,看完后, 你就知道了 tomcat 5.5.35 # # List of comma-separate ...