首先不难发现海拔高度只能为0或1

因为决策是单调的

不难发现最优决策一定是划分为海拔为0和1两块,不会出现01相间的情况

所以这很明显是一个最小割

由于n*n很大,我们必须要用平面图最小割转化为最短路径

在我们做1001时,是平面无向图,这里是平面有向图,其实是一样的

只要记住以起点终点为对角线划分外面为两个面,然后以面为点,边两侧面连边

最后注意新图的任意一条路径对应原图的一个割即可

最后答案就是最短路

 type node=record
       loc,num:longint;
     end;
     cmp=record
       point,next,cost:longint;
     end; var edge:array[..] of cmp;
    heap:array[..] of node;
    p,d,where:array[..] of longint;
    t,m,n,i,j,k,x,y,len:longint; procedure swap(var a,b:node);
  var c:node;
  begin
    c:=a;
    a:=b;
    b:=c;
  end; procedure add(x,y,z:longint);
  begin
    inc(len);
    edge[len].point:=y;
    edge[len].cost:=z;
    edge[len].next:=p[x];
    p[x]:=len;
  end; procedure up(i:longint);
  var j,x,y:longint;
  begin
    j:=i shr ;
    while j> do
    begin
      if heap[i].num<heap[j].num then
      begin
        x:=heap[i].loc;
        y:=heap[j].loc;
        where[x]:=j;
        where[y]:=i;
        swap(heap[i],heap[j]);
        i:=j;
        j:=i shr ;
      end
      else break;
    end;
  end; procedure sift(i:longint);
  var j,x,y:longint;
  begin
    j:=i shl ;
    while j<=m do
    begin
      if (j<m) and (heap[j].num>heap[j+].num) then inc(j);
      if heap[i].num>heap[j].num then
      begin
        x:=heap[i].loc;
        y:=heap[j].loc;
        where[x]:=j;
        where[y]:=i;
        swap(heap[i],heap[j]);
        i:=j;
        j:=i shl ;
      end
      else break;
    end;
  end; begin
  readln(n);
  fillchar(p,sizeof(p),);
  t:=n*n+;
  for i:= to n do
  begin
    readln(x);
    add(,i+,x);
  end;
  for i:= to n do
    for j:= to n do
    begin
      readln(x);
      if i=n then y:=t
      else y:=i*n+j+;
      add((i-)*n+j+,y,x);
    end;   for i:= to n do
  begin
    readln(x);
    add((i-)*n+,t,x);
    for j:= to n do
    begin
      readln(x);
      add((i-)*n+j+,(i-)*n+j,x);
    end;
    readln(x);
    add(,i*n+,x);
  end;   for i:= to n do
  begin
    readln(x);
    add(i+,,x);
  end;
  for i:= to n do
    for j:= to n do
    begin
      readln(x);
      if i=n then y:=t
      else y:=i*n+j+;
      add(y,(i-)*n+j+,x);
    end;   for i:= to n do
  begin
    readln(x);
    add(t,(i-)*n+,x);
    for j:= to n do
    begin
      readln(x);
      add((i-)*n+j,(i-)*n+j+,x);
    end;
    readln(x);
    add(i*n+,,x);
  end;
  m:=t;
  for i:= to t do
  begin
    if i= then d[i]:=
    else d[i]:=;
    heap[i].loc:=i;
    heap[i].num:=d[i];
    where[i]:=i;
  end;
  for i:= to t do
  begin
    k:=heap[].loc;
    if k=t then break;
    x:=heap[m].loc;
    where[x]:=;
    swap(heap[],heap[m]);
    dec(m);
    sift();
    j:=p[k];
    while j<>- do
    begin
      y:=edge[j].point;
      if d[y]>edge[j].cost+d[k] then
      begin
        d[y]:=edge[j].cost+d[k];
        heap[where[y]].num:=d[y];
        up(where[y]);
      end;
      j:=edge[j].next;
    end;
  end;
  writeln(d[t]);
end.

bzoj2007的更多相关文章

  1. 【bzoj2007】 Noi2010—海拔

    http://www.lydsy.com/JudgeOnline/problem.php?id=2007 (题目链接) 题意 $(n+1)*(n+1)$的网格图上,相邻两点间有一些人流.左上角点的海拔 ...

  2. BZOJ2007 [Noi2010]海拔 【平面图最小割转对偶图最短路】

    题目链接 BZOJ2007 题解 这是裸题啊,,要是考试真的遇到就好了 明显是最小割,而且是有来回两个方向 那么原图所有向右的边转为对偶图向下的边 向左的边转为向上 向下转为向左 向上转为向右 然后跑 ...

  3. 【BZOJ2007】[Noi2010]海拔 对偶图最短路

    [BZOJ2007][Noi2010]海拔 Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域.简单起见,可以将YT市看作 一个正方形,每一个区域也可看 ...

  4. 【BZOJ2007】【NOI2010】海拔(最小割,平面图转对偶图,最短路)

    [BZOJ2007][NOI2010]海拔(最小割,平面图转对偶图,最短路) 题面 BZOJ 洛谷 Description YT市是一个规划良好的城市,城市被东西向和南北向的主干道划分为n×n个区域. ...

  5. [BZOJ2007][NOI2010]海拔(对偶图最短路)

    首先确定所有点的海拔非0即1,问题转化成裸的平面图最小割问题,进而转化成对偶图最短路(同BZOJ1002). 这题的边是有向的,所以所有边顺时针旋转90度即可. 如下图(S和T的位置是反的). #in ...

  6. BZOJ2007/LG2046 「NOI2010」海拔 平面图最小割转对偶图最短路

    问题描述 BZOJ2007 LG2046 题解 发现左上角海拔为 \(0\) ,右上角海拔为 \(1\) . 上坡要付出代价,下坡没有收益,所以有坡度的路越少越好. 所以海拔为 \(1\) 的点,和海 ...

  7. bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路)

    bzoj2007/luoguP2046 海拔(平面图最小割转对偶图最短路) 题目描述: bzoj  luogu 题解时间: 首先考虑海拔待定点的$h$都应该是多少 很明显它们都是$0$或$1$,并且所 ...

  8. BZOJ2007——[Noi2010]海拔

    1.题意:一个裸的最小割 2.分析:直接转成对偶图最短路就好了,水爆了!(雾) #include <queue> #include <cstdio> #include < ...

  9. 【BZOJ-2007】海拔 最小割 (平面图转对偶图 + 最短路)

    2007: [Noi2010]海拔 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2095  Solved: 1002[Submit][Status] ...

  10. Bzoj2007 [Noi2010]海拔

    Time Limit: 20 Sec  Memory Limit: 552 MB Submit: 2380  Solved: 1130 Description YT市是一个规划良好的城市,城市被东西向 ...

随机推荐

  1. JOSN对象与JSON字符串的相互转化

    前端在与服务端通信时.会与JSON JSON字符串经常打交道. 什么是JSON?  如果不太清楚可以点击这里 服务端传过来的数据一般都是一串字符串,jQuery AJAX中的success函数的第一个 ...

  2. step2 uboot tag存储主要部分代码

      cmd_bootm.c //传递给内核的参数      int do_bootm (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])     ...

  3. Asp.net简单三层+Sqllite 增删改查

    新建项目à新建一个空白解决方案 在Model新建一个实体类 using System; using System.Collections.Generic; using System.Linq; usi ...

  4. 安卓Intent(显式)

    1.Intent是Android程序中各组件之间交互的重要方式,一般可用于启动活动.启动服务.以及发送广播等场景,这里先对活动进行说明Intent的一些作用. 2.Intent的用法大致可分为,显式I ...

  5. react-native之站在巨人的肩膀上

    react-native之站在巨人的肩膀上 前方高能,大量图片,不过你一定会很爽.如果爽到了,请告诉我

  6. JS1 js获取dom元素方法

     js获取dom元素方法  1.通过ID选取元素(getElementById) 1)使用方法:document.getElementById("domId")         其 ...

  7. delphi 功能函数大全-备份用

    function CheckTask(ExeFileName: string): Boolean;constPROCESS_TERMINATE=$0001;varContinueLoop: BOOL; ...

  8. shell脚本学习之Bash shell 里各种括号的用法

    今天在 SegmentFault 上看到又有人问起关于Shell里各种括号的问题.对于很多玩Shell的人,括号是个很尴尬的问题,用起来没问题,说起来不明白,我在这里总结一下Bash Shell几种括 ...

  9. Node之express

    Express 是一个简洁.灵活的 node.js Web 应用开发框架, 它提供一系列强大的特性,帮助你创建各种 Web 和移动设备应用. 如何安装: npm install -g express ...

  10. 半质数的个数 csdn 英雄会 高校俱乐部

    2·14 情人&元宵节专题:半质数的个数. 题目:质数是大家熟知的概念,我们定义一个半质数的概念:如果一个数恰好是两个质数的乘积(可以相同),则称它为半质数.前几个半质数是 4, 6, 9, ...