Description

Crystal家有一棵树。树上有\(n\)个节点,编号由\(1\)到\(n\)(\(1\)号点是这棵树的根),两点之间距离为1当且仅当它们直接相连。每个点都有各自的权值,第\(i\)号节点的权值为\(value_i\)。Crystal现在指着编号为\(x\)的点问,在以点\(x\)为根的子树中,与点\(x\)距离大于等于\(k\)的所有点的点权和是多少。

Input Format

第\(1\)行两个整数\(n,Q\),分别表示树上点的个数和Crystal有\(Q\)个问题。

第\(2\)行,\(n\)个整数,分别表示\(1\)至\(n\)号点的点权。

接下来的\(n - 1\)行,每行两个整数\(u,v\),表示编号为\(u\)的点与编号为\(v\)的点直接相连。

接下来\(Q\)行,每行两个整数\(x,k\),表示询问在以点\(x\)为根的子树中,与点\(x\)距离大于等于为\(k\)的所有点的点权和是多少。

Output Format

\(Q\)行,每行一个整数,表示对第\(i\)个询问的回答。

Sample Input

5 3

1 1 1 1 1

1 2

1 3

3 4

4 5

1 3

1 2

1 1

Sample Output

1

2

4

Hints

对于\(30\%\)的数据,保证\(n \le 1000, k < 1, Q \le 1000\)。

对于\(60\%\)的数据,保证\(n \le 1000, k < 1000, Q \le 1000\)

对于\(80\%\)的数据,保证\(n \le 1000, k < 1000, Q \le 1000000\);

对于最后\(20\%\)的数据,保证\(n \le 50000, k < 100, Q \le 1000000\);

对于\(100\%\)的数据,保证所有输入数据均为非负整数,且在\(int\)范围内。

这题\(O(NK)\)的做法不难想(用总的减去小于\(K\)的),现在假设\(N,K\)同级怎么做。

首先考虑离线做法,我们可以考虑按照询问最深的深度从小到大一层层加点,答案还是用总的减去小于\(K\)的。

再考虑在线所做法,我们可以先处理出dfs序和子树和,然后对于树的每层开一个vector,vector中记录该层点的编号,按dfs序排序。对于每个询问\(x,k\),我们只需要跳到\(dep[x]+k\)层的vector中,找到在\(x\)子树中的点,且一定是段连续区间,二分即可。现在只需要对该区间求子树和的和即可。

代码是\(O(NK)\)的

    #include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cstring>
#include<vector>
using namespace std; typedef long long ll;
#define maxn (50010)
int cnt = 1,side[maxn],toit[maxn*2],next[maxn*2],val[maxn],N,Q,mxk;
int tx[maxn*20],tk[maxn*20],num[20],len; ll sum[maxn]; vector <ll> res[maxn]; inline int read()
{
char ch; int f = 1,ret = 0;
do ch = getchar(); while (!(ch >= '0'&&ch <= '9')&&ch != '-');
if (ch == '-') f = -1,ch = getchar();
do ret = ret*10+ch-'0',ch = getchar(); while (ch >= '0'&&ch <= '9');
return ret*f;
} inline void add(int a,int b) { next[++cnt] = side[a]; side[a] = cnt; toit[cnt] = b; }
inline void ins(int a,int b) { add(a,b); add(b,a); } inline void dfs(int now,int fa)
{
for (int i = 0;i <= mxk;++i) res[now].push_back(val[now]);
sum[now] = val[now];
for (int i = side[now];i;i = next[i])
{
if (toit[i] == fa) continue;
dfs(toit[i],now);
sum[now] += sum[toit[i]];
for (int j = 0;j < mxk;++j)
res[now][j+1] += res[toit[i]][j];
}
} inline void print(ll a)
{
do num[++len] = a%10,a /= 10; while (a);
while (len) putchar('0'+num[len--]);
puts("");
} int main()
{
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
N = read(); Q = read();
for (int i = 1;i <= N;++i) val[i] = read();
for (int i = 1;i < N;++i) ins(read(),read());
for (int i = 1;i <= Q;++i) tx[i] = read(),tk[i] = read(),mxk = max(mxk,tk[i]);
dfs(1,0);
// print(123456LL);
// print(0LL);
// print(12LL);
for (int i = 1;i <= Q;++i)
{
if (!tk[i]) //cout << sum[tx[i]] << endl;
print(sum[tx[i]]);
else //cout << sum[tx[i]]-res[tx[i]][tk[i]-1] << endl;
print(sum[tx[i]]-res[tx[i]][tk[i]-1]);
}
//fclose(stdin); fclose(stdout);
return 0;
}

sjtu1591 Count On Tree的更多相关文章

  1. leetcode面试准备:Count Complete Tree Nodes

    1 题目 Given a complete binary tree, count the number of nodes. In a complete binary tree every level, ...

  2. leetcode 958. Check Completeness of a Binary Tree 判断是否是完全二叉树 、222. Count Complete Tree Nodes

    完全二叉树的定义:若设二叉树的深度为h,除第 h 层外,其它各层 (1-h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树. 解题思路:将树按照层进行遍历,如果 ...

  3. 完全二叉树的节点个数 Count Complete Tree Nodes

    2018-09-25 16:36:25 问题描述: 问题求解: 单纯遍历了一遍,emmm,果然TLE. 解题思路就是比较左边树高度和右边树高度,如果相等,那么就是一个满二叉树,返回1 << ...

  4. 【LeetCode】222. Count Complete Tree Nodes 解题报告(Python)

    [LeetCode]222. Count Complete Tree Nodes 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个 ...

  5. 【刷题-LeetCode】222. Count Complete Tree Nodes

    Count Complete Tree Nodes Given a complete binary tree, count the number of nodes. Note: Definition ...

  6. [LeetCode] Count Complete Tree Nodes 求完全二叉树的节点个数

    Given a complete binary tree, count the number of nodes. Definition of a complete binary tree from W ...

  7. Count Complete Tree Nodes

    Given a complete binary tree, count the number of nodes. Definition of a complete binary tree from W ...

  8. Java for LeetCode 222 Count Complete Tree Nodes

    Given a complete binary tree, count the number of nodes. Definition of a complete binary tree from W ...

  9. leetcode_222 Count Complete Tree Nodes

    题目: Given a complete binary tree, count the number of nodes. Definition of a complete binary tree fr ...

随机推荐

  1. LC-检索

    line void LC(tree T,float cost) { //为找一个答案结点检索T if(T是答案结点) {输出T:return:} E=T: //E-结点 将活结点表初始化为空: ) { ...

  2. apk 反编译记录

    反编译资源文件 工具:apktool 使用命令:java -jar apktool.jar d test.apk apktool官网下载地址:github 反编译classes.dex文件 工具:de ...

  3. web app开发中 iPhone、iPad默认按钮样式问题

    webapp开发过程中,用html5+css3很方便,而且可以很方便的编译到Android ios等不同平台,但是ios需要单独处理一下,不然会出现一些想象不到的问题.下面就介绍一下各种问题的解决方法 ...

  4. 关于四字节字符入库时错误的解决方案(Incorrect string value: '\xF0\x9F\x99\x8F' for column 'Reply_Content' at row 1)

    1. 将表字段字符集设置成utf8mb4 2. 执行插入前执行:SET NAMES utf8mb4; 如: SET NAMES utf8mb4; INSERT test(Content) VALUES ...

  5. python输出1到100之和的几种方法

    1. 使用内建函数range print sum(range(1,101)) 2. 使用函数reduce print reduce(lambda a,b:a+b,range(1,101)) 3. 使用 ...

  6. xadmin学习笔记(一)——编程准备

    前言 xadmin是GitHub上的开源项目,它是Django admin的超强升级版,提供了强大的插件系统,丰富的内置功能,以及无与伦比的UI主题,使管理系统的实现变得异常简单.详情请参见官方网址. ...

  7. Ubuntu将程序图标加到启动器

    问题: Ubuntu中安装一些程序的时候图标可能没有放到启动器中,不方便使用. 解决问题: 因为FileZilla这个程序是直接解压缩之后便可以使用的,每次都需要到文件所在目录Filezilla/bi ...

  8. ZOJ 1122 Clock(模拟)

    Clock Time Limit: 2 Seconds      Memory Limit: 65536 KB You are given a standard 12-hour clock with ...

  9. How to enable $Admin Shares in Windows 7

    Quote from: http://www.wintips.org/how-to-enable-admin-shares-windows-7/ As “Administrative shares” ...

  10. phpstudy 下开启openssl

    1.在php.ini里面的extension=php_openssl.dll是开启的状态,没有被注释. 2.里面的allow_url_fopen = On表示开启了. 3.如果你是Windows 64 ...