Kafka is a distributed publish-subscribe messaging system. It was originally developed at LinkedIn and became an Apache project in July, 2011. Today, Kafka is used by LinkedIn, Twitter, and Square for applications including log aggregation, queuing, and real time monitoring and event processing.

In the upcoming version 0.8 release, Kafka will support intra-cluster replication, which increases both the availability and the durability of the system. In the following post, I will give an overview of Kafka's replication design.

Kafka Introduction

Kafka provides a publish-subscribe solution that can handle all activity stream data and processing on a consumer-scale web site. This kind of activity (page views, searches, and other user actions) are a key ingredient in many of the social feature on the modern web. Kafka differs from traditional messaging systems in that:

  1. It's designed as a distributed system that's easy to scale out.
  2. It persists messages on disk and thus can be used for batched consumption such as ETL, in addition to real time applications.
  3. It offers high throughput for both publishing and subscribing.
  4. It supports multi-subscribers and automatically balances the consumers during failure.

Check out the Kafka Design Wiki for more details.

Replication

With replication, Kafka clients will get the following benefits:

  1. A producer can continue to publish messages during failure and it can choose between latency and durability, depending on the application.
  2. A consumer continues to receive the correct messages in real time, even when there is failure.

All distributed systems must make trade-offs between guaranteeing consistency, availability, and partition tolerance (CAP Theorem). Our goal was to support replication in a Kafka cluster within a single datacenter, where network partitioning is rare, so our design focuses on maintaining highly available and strongly consistent replicas. Strong consistency means that all replicas are byte-to-byte identical, which simplifies the job of an application developer.

Strongly consistent replicas

In the literature, there are two typical approaches of maintaining strongly consistent replicas. Both require one of the replicas to be designated as the leader, to which all writes are issued. The leader is responsible for ordering all incoming writes, and for propagating those writes to other replicas (followers), in the same order.

The first approach is quorum-based. The leader waits until a majority of replicas have received the data before it is considered safe (i.e., committed). On leader failure, a new leader is elected through the coordination of a majority of the followers. This approach is used in Apache Zookeeper and Google'sSpanner.

The second approach is for the leader to wait for "all" (to be clarified later) replicas to receive the data. When the leader fails, any other replica can then take over as the new leader.

We selected the second approach for Kafka replication for two primary reasons:

  1. The second approach can tolerate more failures with the same number of replicas. That is, it can tolerate f failures with f+1 replicas, while the first approach often only tolerates f failures with 2f +1 replicas. For example, if there are only 2 replicas, the first approach can't tolerate any failures.
  2. While the first approach generally has better latency, as it hides the delay from a slow replica, our replication is designed for a cluster within the same datacenter, so variance due to network delay is small.

Terminology

To understand how replication is implemented in Kafka, we need to first introduce some basic concepts. In Kafka, a message stream is defined by a topic, divided into one or more partitions. Replication happens at the partition level and each partition has one or more replicas.

The replicas are assigned evenly to different servers (called brokers) in a Kafka cluster. Each replica maintains a log on disk. Published messages are appended sequentially in the log and each message is identified by a monotonically increasing offset within the log.

The offset is logical concept within a partition. Given an offset, the same message can be identified in each replica of the partition. When a consumer subscribes to a topic, it keeps track of an offset in each partition for consumption and uses it to issue fetch requests to the broker.

Implementation

 
Figure 1. A Kafka cluster with 4 brokers, 1 topic and 2 partitions, each with 3 replicas

When a producer publishes a message to a partition in a topic, the message is first forwarded to the leader replica of the partition and is appended to its log. The follower replicas keep pulling new messages from the leader. Once enough replicas have received the message, the leader commits it.

One subtle issue is how the leader decides what's enough. The leader can't always wait for writes to complete on all replicas. This is because any follower replica can fail and the leader can't wait indefinitely.

To address this problem, for each partition of a topic, we maintain an in-sync replica set (ISR). This is the set of replicas that are alive and have fully caught up with the leader (note that the leader is always in ISR). When a partition is created initially, every replica is in the ISR. When a new message is published, the leader waits until it reaches all replicas in the ISR before committing the message. If a follower replica fails, it will be dropped out of the ISR and the leader then continues to commit new messages with fewer replicas in the ISR. Notice that now, the system is running in an under replicated mode.

The leader also maintains a high watermark (HW), which is the offset of the last committed message in a partition. The HW is continuously propagated to the followers and is checkpointed to disk in each broker periodically for recovery.

When a failed replica is restarted, it first recovers the latest HW from disk and truncates its log to the HW. This is necessary since messages after the HW are not guaranteed to be committed and may need to be thrown away. Then, the replica becomes a follower and starts fetching messages after the HW from the leader. Once it has fully caught up, the replica is added back to the ISR and the system is back to the fully replicated mode.

Handling Failures

We rely on Zookeeper for detecting broker failures. Similar to Helix, we use a controller (embedded in one of the brokers) to receive all Zookeeper notifications about the failure and to elect new leaders. If a leader fails, the controller selects one of the replicas in the ISR as the new leader and informs the followers about the new leader.

By design, committed messages are always preserved during leadership change whereas some uncommitted data could be lost. The leader and the ISR for each partition are also stored in Zookeeper and are used during the failover of the controller. Both the leader and the ISR are expected to change infrequently since failures are rare.

For clients, a broker only exposes committed messages to the consumers. Since committed data is always preserved during broker failures, a consumer can automatically fetch messages from another replica, using the same offset.

A producer can choose when to receive the acknowledgement from the broker after publishing a message. For example, it can wait until the message is committed by the leader (i.e, it's received by all replicas in the ISR). Alternatively, it may choose to receive an acknowledgement as soon as the message is appended to the log in the leader replica, but may not be committed yet. In the former case, the producer has to wait a bit longer, but all acknowledged messages are guaranteed to be kept by the brokers. In the latter case, the producer has lower latency, but a smaller number of acknowledged messages could be lost when a broker fails.

More info

For more details of the design and the implementation, check out the Kafka Replication Wiki and drop by my Kafka Replication Talk at ApacheCon 2013 in late February.

reference from:http://engineering.linkedin.com/kafka/intra-cluster-replication-apache-kafka

https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Replication

Intra-cluster Replication in Apache Kafka--reference的更多相关文章

  1. Apache Kafka教程

    1.卡夫卡教程 今天,我们正在使用Apache Kafka Tutorial开始我们的新旅程.在这个Kafka教程中,我们将看到什么是Kafka,Apache Kafka历史以及Kafka的原因.此外 ...

  2. How to set an Apache Kafka multi node – multi broker cluster【z】

    Set a multi node Apache ZooKeeper cluster On every node of the cluster add the following lines to th ...

  3. Understanding, Operating and Monitoring Apache Kafka

    Apache Kafka is an attractive service because it's conceptually simple and powerful. It's easy to un ...

  4. Apache Kafka: Next Generation Distributed Messaging System---reference

    Introduction Apache Kafka is a distributed publish-subscribe messaging system. It was originally dev ...

  5. How Cigna Tuned Its Spark Streaming App for Real-time Processing with Apache Kafka

    Explore the configuration changes that Cigna’s Big Data Analytics team has made to optimize the perf ...

  6. Configuring Apache Kafka for Performance and Resource Management

    Apache Kafka is optimized for small messages. According to benchmarks, the best performance occurs w ...

  7. Configuring High Availability and Consistency for Apache Kafka

    To achieve high availability and consistency targets, adjust the following parameters to meet your r ...

  8. Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three Cheap Machines)

    I wrote a blog post about how LinkedIn uses Apache Kafka as a central publish-subscribe log for inte ...

  9. 《Apache kafka实战》读书笔记-kafka集群监控工具

    <Apache kafka实战>读书笔记-kafka集群监控工具 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 如官网所述,Kafka使用基于yammer metric ...

随机推荐

  1. 第 12 章 命令模式【Command Pattern】

    以下内容出自:<<24种设计模式介绍与6大设计原则>> 今天讲命令模式,这个模式从名字上看就很简单,命令嘛,老大发命令,小兵执行就是了,确实是这个意思,但是更深化了,用模式来描 ...

  2. bzoj 2401: 陶陶的难题I 数论

    2401: 陶陶的难题I Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 89  Solved: 24[Submit][Status] Descript ...

  3. 【BZOJ 3110】 [Zjoi2013]K大数查询(整体二分)

    [题目] Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到 ...

  4. java自定义接口

    compareTo:根据该数值是小于.等于.或大于 val 返回 -1.0 或 1:

  5. 使用 Puppet 在 Windows Azure 中配备 Linux 和 Windows 环境

     发布于 2013-12-11 作者 Ross Gardler 微软开放技术有限公司 (MS Open Tech) 很高兴地宣布发行新的 Windows Azure Puppet 模块.通过这个模 ...

  6. 【转】android获取屏幕宽度和高度

    原文网址:http://www.cnblogs.com/howlaa/p/4123186.html 1. WindowManager wm = (WindowManager) getContext() ...

  7. python 中 time 模块 格式化 format

    %y 两位数的年份表示(00-99)%Y 四位数的年份表示(000-9999)%m 月份(01-12)%d 月内中的一天(0-31)%H 24小时制小时数(0-23)%I 12小时制小时数(01-12 ...

  8. [App]Taste VS2015 && Android Studio

    逆水飞 尝试进行各种Android开发工具的安装以及大致流程对比 几个疑惑的地方 1)根据SDK的描述,应该是一个新版本的推出就有对应的包里面包含多个文件那么对于:SDK Platform.APIs. ...

  9. Bzoj 1598: [Usaco2008 Mar]牛跑步 dijkstra,堆,K短路,A*

    1598: [Usaco2008 Mar]牛跑步 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 427  Solved: 246[Submit][St ...

  10. 记录一次MVC3升级MVC4遇到的问题

    前些天,项目组将项目从mvc3升级至mvc4,完了之后,发现突然涌现出一大堆问题.主要是在前端,Razor引擎升级导致的. Razor是从mvc3开始引入的,用过mvc2的就会知道,Razor用起来确 ...