4742: [Usaco2016 Dec]Team Building

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 21  Solved: 16
[Submit][Status][Discuss]

Description

Every year, Farmer John brings his NN cows to compete for "best in show" at the state fair. His arch
-rival, Farmer Paul, brings his MM cows to compete as well (1≤N≤1000,1≤M≤1000).Each of the N+MN+
M cows at the event receive an individual integer score. However, the final competition this year wi
ll be determined based on teams of KK cows (1≤K≤10), as follows: Farmer John and Farmer Paul both 
select teams of KK of their respective cows to compete. The cows on these two teams are then paired 
off: the highest-scoring cow on FJ's team is paired with the highest-scoring cow on FP's team, the s
econd-highest-scoring cow on FJ's team is paired with the second-highest-scoring cow on FP's team, a
nd so on. FJ wins if in each of these pairs, his cow has the higher score.Please help FJ count the n
umber of different ways he and FP can choose their teams such that FJ will win the contest. That is,
 each distinct pair (set of KK cows for FJ, set of KK cows for FP) where FJ wins should be counted. 
Print your answer modulo 1,000,000,009.
每年农夫约翰都会带着他的N只牛去集会上参加“你是最棒哒“的比赛。他的对手农夫保罗也带了M只牛去参加比赛
(1 ≤ N ≤ 1000, 1 ≤ M ≤ 1000)。每只牛都有自己的分数。两人会选择K只牛组成队伍(1 ≤ K ≤ 10),两队
牛在按分数大小排序后一一配对,并且约翰打败保罗当且仅当对于每一对牛,约翰的牛分数都比保罗的高。请帮助
约翰计算约翰打败保罗的方案数 mod 1000000009。两种方案不同,当且仅当约翰或保罗选择的牛的集合与另一种
方案不同。
 

Input

The first line of input contains N, M, and K. The value of K will be no larger than N or M.
The next line contains the N scores of FJ's cows.
The final line contains the M scores of FP's cows.
 

Output

Print the number of ways FJ and FP can pick teams such that FJ wins, modulo 1,000,000,009.
 

Sample Input

10 10 3
1 2 2 6 6 7 8 9 14 17
1 3 8 10 10 16 16 18 19 19

Sample Output

382

HINT

 

Source

[Submit][Status][Discuss]

看到网上还没有人写题解,来抢百度的沙发好了(不知道抢的抢不上)。

就是一道水水的动态规划了:首先得给两个序列分别排个序,$f[i][j][k]$表示使用FJ的前i头牛,以及FP的前j头牛,组出k头牛的战斗序列的方案数。$f[i][j][k]$向$f[i+1][j][k]$和$f[i][j+1][k]$转移,分别代表不选择FJ的第i头牛以及不选择FP的第j头牛,$f[i][j][k]$向$f[i+1][j+1][k+1]$转移当且仅当FJ的第i+1头牛能胜过FP的第j+1头牛。发现$f[i+1][j][k]$和$f[i][j+1][k]$向$f[i+1][j+1][k]$都有转移,而事实上这两次转移的方案是一样的,简言之,算重了,咋办,减掉就好,所以$f[i+1][j+1][k]-=f[i][j][k]$。

 #include <cstdio>
#include <algorithm> inline int nextChar(void) {
const int siz = ; static char buf[siz];
static char *hd = buf + siz;
static char *tl = buf + siz; if (hd == tl)
fread(hd = buf, , siz, stdin); return *hd++;
} inline int nextInt(void) {
register int ret = ;
register int neg = false;
register int bit = nextChar(); for (; bit < ; bit = nextChar())
if (bit == '-')neg ^= true; for (; bit > ; bit = nextChar())
ret = ret * + bit - ; return neg ? -ret : ret;
} const int siz = ;
const int mod = ; int n, m, d; int a[siz];
int b[siz]; int f[siz][siz][]; inline void add(int &a, int b)
{
a += b; if (a >= mod)
a -= mod; if (a < )
a += mod;
} signed main(void)
{
n = nextInt();
m = nextInt();
d = nextInt(); for (int i = ; i <= n; ++i)
a[i] = nextInt(); for (int i = ; i <= m; ++i)
b[i] = nextInt(); std::sort(a + , a + + n);
std::sort(b + , b + + m); f[][][] = ; for (int i = ; i <= n; ++i)
for (int j = ; j <= m; ++j)
for (int k = ; k <= d; ++k)
if (f[i][j][k])
{
add(f[i + ][j][k], f[i][j][k]);
add(f[i][j + ][k], f[i][j][k]);
add(f[i + ][j + ][k], -f[i][j][k]); if (a[i + ] > b[j + ])
add(f[i + ][j + ][k + ], f[i][j][k]);
} printf("%d\n", f[n][m][d]);
}

@Author: YouSiki

BZOJ 4742: [Usaco2016 Dec]Team Building的更多相关文章

  1. BZOJ4742 : [Usaco2016 Dec]Team Building

    如果我们将两个人拥有的牛混在一起,并按照战斗力从小到大排序,同时把第一个人选的牛看成$)$,第二个人选的牛看成$($的话,那么我们会发现一个合法的方案对应了一个长度为$2k$的括号序列. 于是DP即可 ...

  2. bzoj 4747: [Usaco2016 Dec]Counting Haybales

    23333,在扒了一天题解之后发现我竟然还能秒题,虽然这是个pj的sb题... (排个序,然后upper_bound和lower_bound一用就行了(是不是有O(1)的查询方法啊??貌似要离散啊,一 ...

  3. BZOJ 4576: [Usaco2016 Open]262144

    Description 一个序列,每次可以将两个相同的数合成一个数,价值+1,求最后最大价值 \(n \leqslant 262144\) Sol DP. 这道题是 BZOJ 4580: [Usaco ...

  4. CF1316E Team Building

    CF1316E [Team Building] 状压dp,感觉比D简单 \(f[i][s]\),表示考虑前\(i\)个人,状态为\(s\)(\(s\)的第\(j-1\)个二进制位表示队员的第\(j\) ...

  5. BZOJ 1626: [Usaco2007 Dec]Building Roads 修建道路( MST )

    计算距离时平方爆了int结果就WA了一次...... ------------------------------------------------------------------------- ...

  6. bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路 -- 最小生成树

    1626: [Usaco2007 Dec]Building Roads 修建道路 Time Limit: 5 Sec  Memory Limit: 64 MB Description Farmer J ...

  7. BZOJ 1626 [Usaco2007 Dec]Building Roads 修建道路:kruskal(最小生成树)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1626 题意: 有n个农场,坐标为(x[i],y[i]). 有m条原先就修好的路,连接农场( ...

  8. BZOJ——1626: [Usaco2007 Dec]Building Roads 修建道路

    http://www.lydsy.com/JudgeOnline/problem.php?id=1626 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1 ...

  9. bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路【最小生成树】

    先把已有的边并查集了,然后MST即可 记得开double #include<iostream> #include<cstdio> #include<algorithm&g ...

随机推荐

  1. SpringMVC传值、转发、重定向例子

    练习接收页面参数值 使用request 使用@RequestParam注解 使用实体对象 练习向页面传出数据 使用HttpServletRequest和session 使用ModelAndView对象 ...

  2. 再谈HashMap

    HashMap是一个高效通用的数据结构,它在每一个Java程序中都随处可见.先来介绍些基础知识.你可能也知 道,HashMap使用key的hashCode()和equals()方法来将值划分到不同的桶 ...

  3. Qt 中使用Singleton模式需小心

    在qt中,使用Singleton模式时一定要小心.因为Singleton模式中使用的是静态对象,静态对象是直到程序结束才被释放的,然而,一旦把该静态对象纳入了Qt的父子对象体系,就会导致不明确的行为. ...

  4. PHP HTTP请求

    stream_context_create 1.curl仍然是最好的HTTP库,没有之一. 可以解决任何复杂的应用场景中的HTTP 请求2. 文件流式的HTTP请求比较适合处理简单的HTTP POST ...

  5. JS高程4.变量,作用域和内存问题(3)垃圾收集

    JavaScript的自动垃圾收集机制 执行环境会负责管理代码执行过程中使用的内存,编写JavaScript程序时,所需内存的分配以及无用内存的回收完全实现自动管理. 原理: 找出那些不再继续使用的变 ...

  6. 浅谈Hybrid技术的设计与实现第二弹

    前言 浅谈Hybrid技术的设计与实现 浅谈Hybrid技术的设计与实现第二弹 浅谈Hybrid技术的设计与实现第三弹——落地篇 接上文:浅谈Hybrid技术的设计与实现(阅读本文前,建议阅读这个先) ...

  7. 5.1 JS中Object类型

    1.Object类型是引用类型中的一种. 2.创建Object实例(对象)的方式: 方式1:使用new操作符,后面跟上Object构造函数.如: var obj = new Object();//创建 ...

  8. RichText

    RichText 效果 特点 1.按照需要调节部分字体的颜色 2.调节段落的行间距,字间距 源码 github:https://github.com/makingitbest/RichText 细节 ...

  9. MySQL主从复制(Master-Slave)实践

    MySQL数据库自身提供的主从复制功能可以方便的实现数据的多处自动备份,实现数据库的拓展.多个数据备份不仅可以加强数据的安全性,通过实现读写分离还能进一步提升数据库的负载性能. 下图就描述了一个多个数 ...

  10. webform(八)——LinQ简单增、删、改、查

    一.简单介绍 1.LinQ to Sql类(NET Language Integrated Query (LINQ) ) LINQ定义了大约40个查询操作符,如select.from.in.where ...