这是个版子题,当然本蒟蒻也是看了好几天才明白

对于这样的线性方程组,我们可以看成是一个矩阵

对于百度百科给的定义(我感到很迷)赶脚和行列式有的一拼

但我们要注意的是:

行列式是一个确切的值(有关行列式求值,下片博文再说),可以看做是一个数值;

而矩阵不同,矩阵是一个数表,无特殊的值。当然,性质也略有不同(这里就先不细讲了)

高斯消元的核心就是把这个n*n的矩阵消成一个对角矩阵(就是除了a【i】【i】为1以外,其余全为零但是不要乱划a【i】【n+1】这是我们要输出的东西)然后就ok了

其中一些性质可以通过度娘或下面的(李昊的)过程代码验证一下

//这不是AC代码,只是一个检测的(黈力的小心一点啊QAQ)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> pr;
const double pi=acos(-);
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define per(i,n,a) for(int i=n;i>=a;i--)
#define Rep(i,u) for(int i=head[u];i;i=Next[i])
#define clr(a) memset(a,0,sizeof a)
#define pb push_back
#define mp make_pair
#define fi first
#define sc second
ld eps=1e-;
ll pp=;
ll mo(ll a,ll pp){if(a>= && a<pp)return a;a%=pp;if(a<)a+=pp;return a;}
ll powmod(ll a,ll b,ll pp){ll ans=;for(;b;b>>=,a=mo(a*a,pp))if(b&)ans=mo(ans*a,pp);return ans;}
ll read(){
ll ans=;
char last=' ',ch=getchar();
while(ch<'' || ch>'')last=ch,ch=getchar();
while(ch>='' && ch<='')ans=ans*+ch-'',ch=getchar();
if(last=='-')ans=-ans;
return ans;
}
//head
int n,m;
double a[][]; bool check(int k){
if(fabs(a[k][n+])<eps)return ;
rep(i,,n)
if(fabs(a[k][i])>eps)return ;
return ;
}
int main(){
freopen("1.txt","r",stdin);
n=read();m=read();
// a_i,1 a_i,2 ... a_i,n a_i,n+1
rep(i,,m)
rep(j,,n+)a[i][j]=read();
rep(j,,m){
rep(k,,n+)cout<<a[j][k]<<" ";
puts("");
}
int flag=;
rep(i,,n){
int t=i;
while(a[t][i]== && t<=n)t+=;
if(t==n+){
flag=;
continue;
}
rep(j,,n+)swap(a[i][j],a[t][j]);
double kk=a[i][i];
rep(j,,n+)a[i][j]/=kk;
rep(j,,m)
if(i!=j){
double kk=a[j][i];
rep(k,,n+)
a[j][k]-=kk*a[i][k];
}
puts("------------");
rep(j,,m){
rep(k,,n+)cout<<a[j][k]<<" ";
puts("");
}
}
if(flag){
rep(i,,m)
if(!check(i)){
printf("No solution\n");
return ;
}
printf("So many solutions\n");
} }

通过这个代码,可以看到化简的每一步过程

下面才是真正的AC代码:

//真正的AC代码
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int n,s;
double a[][];
int main()
{
cin>>n;
for(int i=;i<=n;i++)//输入矩阵
for(int j=;j<=n+;j++)//别忘记最后那一列
  cin>>a[i][j];
for(int i=;i<=n;i++)
{
s=i;
while(a[s][i]==&&s<=n)
s++;
if(s==n+)
{
cout<<"No Solution";//判是否有解(若有一行或一列全为0,则无解)
return ;
}
for(int j=;j<=n+;j++)
swap(a[i][j],a[s][j]);
double k=a[i][i];
for(int j=;j<=n+;j++)
a[i][j]=a[i][j]/k; //为防止a【i】【i】为零,可以换一下
for(int j=;j<=n;j++)
{
if(i!=j)
{
double ki=a[j][i];
for(int m=;m<=n+;m++)
a[j][m]=a[j][m]-ki*a[i][m];//这就保证可以将除了a【i】【i】的全部为0
}
}
}
for(int i=;i<=n;i++)
printf("%.2lf\n",a[i][n+]);//输出ouo
return ;
}

这其中用到了一些神奇的性质,还是提前掌握为妙

【洛谷P3389 【模板】高斯消元法】的更多相关文章

  1. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  2. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  3. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  4. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  5. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  6. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  7. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  8. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  9. 洛谷P3385 [模板]负环 [SPFA]

    题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个 ...

  10. [洛谷P3806] [模板] 点分治1

    洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...

随机推荐

  1. Spark之Pipeline处理模式

    一.简介 Pipeline管道计算模式:只是一种计算思想,在数据处理的整个流程中,就想水从管道流过一下,是顺序执行的. 二.特点 1.数据一直在管道中,只有在对RDD进行持久化[cache,persi ...

  2. FIDDLER的使用方法及技巧总结

    转自: https://www.cnblogs.com/ink-marks/p/6363275.html 一.FIDDLER快速入门及使用场景 Fiddler的官方网站:http://www.fidd ...

  3. restful api与传统api的区别(方式及语法)

    示例:一个状态数据操作接口 传统模式: api/getstate.aspx- 获取状态信息api/updatestate.aspx - 更新状态信息api/deletestate.aspx - 删除该 ...

  4. Java文件下载:如何编码文件名称以及如何设置HttpServletResponse

    在下载文件时,经常遇到文件名乱码等问题. 本文说明如何编码文件名,以及如何设置HttpServletResponse对象. 1,如何编码文件名 String userAgent = request.g ...

  5. phpstorm设置编码格式

    phpstorm设置编码格式 默认: utf-8格式 设置方法: file -> settings -> Editor -> file encodng -> project e ...

  6. 【Python 16】分形树绘制4.0(利用递归函数绘制分形树fractal tree)

     1.案例描述 树干为80,分叉角度为20,树枝长度小于5则停止.树枝长小于30,可以当作树叶了,树叶部分为绿色,其余为树干部分设为棕色. 2.案例分析 由于分形树具有对称性,自相似性,所以我们可以用 ...

  7. HBase源码实战:ImportTsv

    /** * * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agr ...

  8. ValueOf()和toString()

    var colors = ["red", "blue", "green"]; // 创建一个包含3 个字符串的数组 console.log( ...

  9. JavaScript 面向对象之原型对象

    原型的概述 我们创建的每个函数都有一个 prototype(原型)属性,这个属性是一个对象,它的用途是包含可以由特定类型的所有实例共享的属性和方法. 逻辑上可以这么理解:prototype 通过调用构 ...

  10. JavaScript面向对象—基本数据类型和引用数据类型的区别和变量及作用域(函数和变量)

    基本类型和引用类型的值 ECMAScript 变量可能包含两种不同的数据类型的值:基本类型值和引用类型值. 基本类型值指的是那些保存在栈内存中的简单数据段,即这种值完全保存在内存中的一个位置. 而引用 ...