今天HMR大佬给我们讲解了这一道难题。

基本思路是:

可以将问题转化为:求出杨辉三角,用二维数组f[i][j]来表示在杨辉三角中以第i行第j列的点为右下角,第0行第0列处的点为左上角的矩阵中所有元素是k的倍数的个数;

那么这样一来f[i][j]的状态转移方程为:f[i][j]=f[i][j-1]+f[i-1][j]-f[i-1][j-1]

这个方程的意思是以第i行第j-1列的点为右下角的矩阵中的元素是k的倍数的个数+以第i-1行第j列的点为右下角的矩阵中的元素是k的倍数的个数-以第i-1行第j-1列的点为右下角的矩阵中的元素是k的倍数的个数,如果不减去f[i-1][j-1]的话就会多加上那一块重复的。

这是大佬的AC代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cctype>
#define ll long long
#define gc() getchar()
#define maxn 2005
using namespace std; inline ll read(){ //快读
ll a=;int f=;char p=gc();
while(!isdigit(p)){f|=p=='-';p=gc();}
while(isdigit(p)){a=(a<<)+(a<<)+(p^);p=gc();}
return f?-a:a;
}
void write(ll a){
if(a>)write(a/);
putchar(a%+'');
} int t,k,c[maxn][maxn],f[maxn][maxn];
int main(){
t=read();k=read();
for(int i=;i<=;++i)c[i][]=;
for(int i=;i<=;++i) //枚举杨辉三角
for(int j=;j<=i;++j)
c[i][j]=(c[i-][j-]+c[i-][j])%k;
for(int i=;i<=;++i){
for(int j=;j<=i;++j){
f[i][j]=f[i-][j]+f[i][j-]-f[i-][j-]; //状态转移方程
if(!c[i][j])f[i][j]++;
}
f[i][i+]=f[i][i];
}
for(int i=;i<=t;++i){
int n=read(),m=read();
if(m>n)m=n;
write(f[n][m]);
putchar('\n');
}
return ;
}

P2822 组合数问题 HMR大佬讲解的更多相关文章

  1. P1313 计算系数 HMR大佬讲解

    今天,HMR大佬给我们讲解了这一道难题. 这道题明显的二项式定理,自然想到了要用到杨辉三角了.基本思路就是先用for循环求出杨辉三角,这样就求出了x的n次方的系数和y的m次方的系数. 这是大佬的AC代 ...

  2. 洛谷P2822 组合数问题

    输入输出样例 输入样例#1: 1 2 3 3 输出样例#1: 1 输入样例#2: 2 5 4 5 6 7 输出样例#2: 0 7 说明 [样例1说明] 在所有可能的情况中,只有C_2^1 = 2C21 ...

  3. P2822 组合数问题——巧用前缀和

    P2822 组合数问题 求的是C(i,j)有多少个是k的倍数: 首先,求组合数是有技巧的, 用杨辉三角求组合数,爽的一批: 但是,这样只能得90分,两个点T了: 因为k是不变的,我们可以用前缀和的思想 ...

  4. Luogu P2822 组合数问题(前缀和)

    P2822 组合数问题 题意 题目描述 组合数\(C_n^m\)表示的是从\(n\)个物品中选出\(m\)个物品的方案数.举个例子,从\((1,2,3)\)三个物品中选择两个物品可以有\((1,2), ...

  5. 洛谷P2822 组合数问题(题解)

    https://www.luogu.org/problemnew/show/P2822(题目传送) 先了解一下有关组合数的公式:(m在上,n在下) 组合数通项公式:C(n,m)=n!/[m!(n-m) ...

  6. 【洛谷P2822 组合数问题】

    题目连接 #include<iostream> #include<cstring> #include<cstdio> #include<cctype> ...

  7. P2822组合数问题

    组合数问题(NOIP2016提高组Day2T1) Time Limit:1000MS  Memory Limit:512000K [题目描述] 组合数表示的是从n个物品中选出m个物品的方案数.举个例子 ...

  8. 洛谷P2822组合数问题

    传送门啦 15分暴力,但看题解说暴力分有30分. 就是找到公式,然后套公式.. #include <iostream> #include <cstdio> #include & ...

  9. 洛谷 P2822 组合数问题

    题目描述 组合数C_n^mC​n​m​​表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的 ...

随机推荐

  1. weblogic 安装配置打补丁

    Master Note on WebLogic Server (WLS) Patches, Upgrade Installers, and Full Installers

  2. Vysor破解助手for Linux and macOS

    <Vysor Pro破解助手>提供了Windows下的Vysor破解工具,为了使用Linux及macOS同学的方便,最近整理了Linux及macOS版的Vysor破解助手. Linux版V ...

  3. win10的react native 开发环境搭建,使用Android模拟器

    1.打开cmd的管理员模式,win+X,选择命令提示符(管理员)即可,运行如下命令: @"%SystemRoot%\System32\WindowsPowerShell\v1.0\power ...

  4. Java新知识系列 八

    什么是死锁,死锁的原因和必要条件:       []什么是死锁,死锁的原因和必要条件: 死锁:死锁的原因在于进程在等待其它进程占有的某些资源,而自身的资源又被其它进程等待着,造成了死循环. 出现死锁的 ...

  5. selenium-弹窗操作(八)

    本次以笔者公告栏的 打赏 弹窗为例 对弹窗中的一些操作进行封装后,在测试中使用 作用:减少对弹窗反复操作时进行定位的麻烦,以后使用中都直接调用即可达到目的 # coding=utf-8 from se ...

  6. C# 反射的例子

    通过字符串变量访问控件 string t = "textbox1"; TextBox tb = (TextBox)this.GetType().GetField(t, System ...

  7. 利用ZYNQ SOC快速打开算法验证通路(3)——PS端DMA缓存数据到PS端DDR

    上篇该系列博文中讲述W5500接收到上位机传输的数据,此后需要将数据缓存起来.当数据量较大或者其他数据带宽较高的情况下,片上缓存(OCM)已无法满足需求,这时需要将大量数据保存在外挂的DDR SDRA ...

  8. 记录Vim常用命令

    命令 简单说明 i 进入编辑模式,光标在原位置 I 进入编辑模式,光标在行首位置 o 从光标所在行,下面一行开始编辑 O 从光标所在行,上面一行开始编辑 a 从光标当前字符后编辑 A 从光标所在行的行 ...

  9. insert into select的实际用法

    INSERT INTO SELECT语句 语句形式为:Insert into Table2(field1,field2,...) select value1,value2,... from Table ...

  10. Kafka配置项unclean.leader.election.enable造成consumer出现offset重置现象

    消费端出现offset重置为latest, earliest现象,类似log: (org.apache.kafka.clients.consumer.internals.Fetcher.handleF ...