Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列
给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k\)。第一次修改之前及每次修改之后,都要求你找到一个同样长度为 \(n\) 的单调不降序列 \(B_1, \ldots , B_n\),使得 \(\sum_{i=1}^n (A_i −B_i)^2\) 最小,并输出该最小值。需要注意的是每次操作的影响都是独立的,也即每次操作只会对当前询问造成影响。为了避免精度问题,我们保证这个最小值是个分数,也即能表示为两个非负整数相除的形式:\(x/y\)。那么你将要输出 \((x\times y^{P-2})\bmod P\) 的值,表示模意义下 \(x/y\) 的值。其中 \(P=998244353\) 是一个大质数。
输入格式
第一行两个非负整数 \(n,m\),代表序列长度和操作数。
第二行有 \(n\) 个由空格隔开的正整数,代表序列 \(A_1, \ldots , A_n\)。
接下来 \(m\) 行每行两个正整数 \(i, k\),代表将 \(A_i\) 修改为 \(k\)。
输出格式
输出 \(m + 1\) 行每行一个整数,第 \(i\) 行输出第 \(i − 1\) 次修改后的答案。特别的,第 \(1\) 行应为初始局面的答案。
数据范围与提示
对于前 \(10\%\) 的数据,保证 \(n, m \le 10\),\(k, A_i ≤ 1000\),且存在一种最优方案,使得 \(B_i\) 皆为整数。
对于前 \(30\%\) 的数据,保证 \(n, m \le 100\)。
对于另外 \(20\%\) 的数据,保证 \(m = 0\)。
对于另外 \(20\%\) 的数据,保证 \(n, m \le 3 \times 10^4\)。
对于所有数据,保证 \(3 \le n \le 10^5, 0 \le m \le 10^5, 1 \le k, A_i \le 10^9\)。
\(\\\)
假设没有修改,那这就是个经典问题(然而我不会)。
如果\(A\)也是个单调不下降序列,那么答案就是\(0\)。否则,对于\(A_i>A_{i+1}\)的情况,我们将\(A_i\)和\(A_{i+1}\)合并起来。合并后的块之间也存在这种关系,不过是拿块的平均值比较。
\(B_i\)就是\(i\)所在块的平均值。
我们先将询问离线下来,按位置排序。假设当前处理位置\(i\)的询问,我们维护两个栈,一个是从\(1\)到\(i-1\),按上述规则合并后的栈;一个数从\(i+1\)到\(n\)按上述规则合并后的栈。对于后一个栈,我们可以先从\(n\)到\(1\)维护一遍,记录下每个位置\(i\)加入栈中对这个栈的修改。然后依次回退。
假设修改后\(i\)所在的块为\([L,R]\),那么\([L,R]\),\([1,L-1]\)与\([R+1,n]\)分别形成的栈之间是相互独立的。这也就是维护两个栈的原因。
考虑求\([L,R]\)。我们先二分出\(R\),然后再找对应的\(L\),判断\([L,R]\)的平均值是否\(\leq\)\(R+1\)所在块的平均值,如果是,将二分边界往左移;否则往右移(注意这里二分的是完整的块)。因为如果以\(R\)所在块为右端点成立,那么我们加入\(R\)所在块右侧的块依然成立,所以答案是有单调性的。找\(R\)对应的\(L\)用的也是相同的原理。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 100005
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
const ll mod=998244353;
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
}
int n,m;
ll a[N];
struct node {
ll sum,size;
int l,r;
long double key;
node() {}
node(ll _sum,ll _size,int _l,int _r) {
sum=_sum,size=_size;
l=_l,r=_r;
key=(long double)sum/size;
}
};
node operator +(const node &a,const node &b) {return node(a.sum+b.sum,a.size+b.size,min(a.l,b.l),max(a.r,b.r));}
int cal() {
static node st[N];
int top;
st[top=1]=node(a[1],1,1,1);
node tem;
for(int i=2;i<=n;i++) {
tem=node(a[i],1,i,i);
while(top>=1&&st[top].key>=tem.key) {
tem=tem+st[top];
top--;
}
st[++top]=tem;
}
int now=1;
ll ans=0;
for(int i=1;i<=top;i++) {
ll ave=st[i].sum%mod*ksm(st[i].size,mod-2)%mod;
for(int j=1;j<=st[i].size;j++,now++) {
(ans+=(a[now]-ave)*(a[now]-ave))%=mod;
}
}
return ans;
}
int rx[N],lx[N];
ll sum[N];
ll suf[N],pre[N],sums[N];
int t1=0,t2=0;
node pres[N],sufs[N];
int pos[N];
node del[N];
struct query {
int id,k;
};
vector<query>q[N];
int Find_left(int x,ll val,int R) {
if(x==1) return 1;
if(pres[t1].key<=(long double)(sum[R]-sum[x]+val)/(R-x+1)) return x;
int l=1,r=t1,mid;
while(l<r) {
mid=l+r+1>>1;
int L=pres[mid].l;
long double k=(long double)(sum[R]-sum[L-1]-a[x]+val)/(R-L+1);
if(pres[mid-1].key<=k) l=mid;
else r=mid-1;
}
return pres[l].l;
}
int Find_right(int x,ll val) {
if(x==n) return n;
int L=Find_left(x,val,x);
if(sufs[t2].key>=(long double)(sum[x-1]-sum[L-1]+val)/(x-L+1)) return x;
int l=1,r=t2,mid;
while(l<r) {
mid=l+r+1>>1;
int R=sufs[mid].r;
int L=Find_left(x,val,R);
long double k=(long double)(sum[R]-sum[L-1]-a[x]+val)/(R-L+1);
if(k>sufs[mid-1].key) r=mid-1;
else l=mid;
}
return sufs[l].r;
}
ll Ans[N];
int main() {
n=Get(),m=Get();
for(int i=1;i<=n;i++) a[i]=Get();
for(int i=1;i<=n;i++) {
sum[i]=sum[i-1]+a[i];
sums[i]=(sums[i-1]+a[i]*a[i])%mod;
}
cout<<cal()<<"\n";
for(int i=1;i<=m;i++) {
int x=Get(),k=Get();
q[x].push_back((query) {i,k});
}
node tem;
for(int i=n;i>=1;i--) {
tem=node(a[i],1,i,i);
pos[i]=t2;
while(t2&&sufs[t2].key<=tem.key) {
tem=tem+sufs[t2];
t2--;
}
del[i]=sufs[++t2];
sufs[t2]=tem;
ll ave=tem.sum%mod*ksm(tem.size,mod-2)%mod;
int R=tem.r;
suf[i]=((suf[R+1]+sums[R]-sums[i-1]+ave*ave%mod*(R-i+1)-2*ave*((sum[R]-sum[i-1])%mod))%mod+mod)%mod;
}
pres[0].key=0;
sufs[0].key=1e9+7;
for(int i=1;i<=n;i++) {
sufs[t2]=del[i];
t2=pos[i];
for(int j=0;j<q[i].size();j++) {
int x=i;
ll k=q[i][j].k;
ll dlt=(k-a[x]+mod)%mod,dlts=(k*k-a[x]*a[x])%mod+mod;
int R=Find_right(x,k),L=Find_left(i,k,R);
ll ans=(pre[L-1]+suf[R+1])%mod;
ll ave=(sum[R]-sum[L-1]+dlt+mod)%mod*ksm(R-L+1,mod-2)%mod;
ans=((ans +sums[R]-sums[L-1]+dlts +ave*ave%mod*(R-L+1)%mod -2*ave*((sum[R]-sum[L-1]+dlt)%mod))%mod+mod)%mod;
Ans[q[i][j].id]=ans;
}
tem=node(a[i],1,i,i);
while(t1&&pres[t1].key>=tem.key) {
tem=tem+pres[t1];
t1--;
}
pres[++t1]=tem;
ll ave=tem.sum%mod*ksm(tem.size,mod-2)%mod;
int L=tem.l;
pre[i]=((pre[L-1]+sums[i]-sums[L-1]+ave*ave%mod*(i-L+1)%mod-2*ave*((sum[i]-sum[L-1])%mod))%mod+mod)%mod;
}
for(int i=1;i<=m;i++) cout<<Ans[i]<<"\n";
return 0;
}
Loj #3059. 「HNOI2019」序列的更多相关文章
- LOJ 3059 「HNOI2019」序列——贪心与前后缀的思路+线段树上二分
题目:https://loj.ac/problem/3059 一段 A 选一个 B 的话, B 是这段 A 的平均值.因为 \( \sum (A_i-B)^2 = \sum A_i^2 - 2*B \ ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
- Loj 3058. 「HNOI2019」白兔之舞
Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...
- Loj #3055. 「HNOI2019」JOJO
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...
- Loj #3057. 「HNOI2019」校园旅行
Loj #3057. 「HNOI2019」校园旅行 某学校的每个建筑都有一个独特的编号.一天你在校园里无聊,决定在校园内随意地漫步. 你已经在校园里呆过一段时间,对校园内每个建筑的编号非常熟悉,于是你 ...
- loj #2051. 「HNOI2016」序列
#2051. 「HNOI2016」序列 题目描述 给定长度为 n nn 的序列:a1,a2,⋯,an a_1, a_2, \cdots , a_na1,a2,⋯,an,记为 a[1: ...
- LOJ 3158: 「NOI2019」序列
题目传送门:LOJ #3158. 题意简述: 给定两个长度为 \(n\) 的正整数序列 \(a,b\),要求在每个序列中都选中 \(K\) 个下标,并且要保证同时在两个序列中都被选中的下标至少有 \( ...
- LOJ #2183「SDOI2015」序列统计
有好多好玩的知识点 LOJ 题意:在集合中选$ n$个元素(可重复选)使得乘积模$ m$为$ x$,求方案数对$ 1004535809$取模 $ n<=10^9,m<=8000且是质数,集 ...
- LOJ 3057 「HNOI2019」校园旅行——BFS+图等价转化
题目:https://loj.ac/problem/3057 想令 b[ i ][ j ] 表示两点是否可行,从可行的点对扩展.但不知道顺序,所以写了卡时间做数次 m2 迭代的算法,就是每次遍历所有不 ...
随机推荐
- 【朝花夕拾】Android性能篇之(一)序言及JVM
序言 笔者从事Anroid开发有些年头了,深知掌握Anroid性能优化方面的知识的必要性,这是一个程序员必须修炼的内功.在面试中,它是面试官的挚爱,在工作中,它是代码质量的拦路虎,其重要 ...
- 学习springboot
一般而言,写个Javaweb应用搭建环境都可能要几十分钟,下载个tomcat服务器,再加上各种xml配置等等,很烦躁,而且每个web应用的配置还差不多,都是什么web.xml,application. ...
- Java基础9:解读Java回调机制
更多内容请关注微信公众号[Java技术江湖] 这是一位阿里 Java 工程师的技术小站,作者黄小斜,专注 Java 相关技术:SSM.SpringBoot.MySQL.分布式.中间件.集群.Linux ...
- Java基础7:关于Java类和包的那些事
更多内容请关注微信公众号[Java技术江湖] 这是一位阿里 Java 工程师的技术小站,作者黄小斜,专注 Java 相关技术:SSM.SpringBoot.MySQL.分布式.中间件.集群.Linux ...
- Netty 简介
上文我们介绍了NIO和BIO的区别,NIO相对于BIO是一次很大的进步.但我们平时开发中并不会使用NIO.这是因为NIO在开发中存在以下问题 NIO的类库和API繁杂,使用麻烦,需要熟练掌握Selec ...
- Python3+Selenium2完整的自动化测试实现之旅(四):Selenium-webdriver操作浏览器、Cookie、鼠标键盘、警示框、设置等待时间、多窗口切换
本篇学习总结webdriver模块操作浏览器.Cookie.鼠标键盘.警示框.设置等待时间.多窗口切换等方法的使用 1 浏览器控制 Selenium-webdriverAPI提供了对页面元素定位 ...
- 从零开始学安全(三十七)●VM汇编环境搭建
需要下载 vm 虚拟机 破解版连接 链接:https://pan.baidu.com/s/1r9MyPkNBmiYhQ8bdUxPmvQ 提取码:2o98 镜像文件和开发环境 链接:https://p ...
- SAP MM MI01事务代码里的批次确定
SAP MM MI01事务代码里的批次确定 1 – 批次管理启用之后果 一个物料如果启用了批次管理,那么库存管理以及盘点等诸多事务里都需要在批次的层次上进行. 货物移动的时候,需要在界面上指定相关货物 ...
- Mysql表分区的选择与实践小结
在一些系统中有时某张表会出现百万或者千万的数据量,尽管其中使用了索引,查询速度也不一定会很快.这时候可能就需要通过分库,分表,分区来解决这些性能瓶颈. 一. 选择合适的解决方法 1. 分库分表. 分库 ...
- 转载:Linux服务器Cache占用过多内存导致系统内存不足最终java应用程序崩溃解决方案
原文链接: https://blog.csdn.net/u014740338/article/details/66975550 问题描述 Linux内存使用量超过阈值,使得Java应用程序无可用内存, ...